1. 时间复杂度和空间复杂度 (7 天掌握算法面试必考知识点)

全文内容主要源于极客大学的算法课,仅作为笔记使用。

学习计划



由于每天都需要写学习心得和作业,所以写此贴作为笔记。也希望可以帮助到有需要的同学。

1、时间复杂度

(1)时间复杂度的统计维度

O(1): Constant Complexity 常数复杂度
O(log n): Logarithmic Complexity 对数复杂度
O(n): Linear Complexity 线性时间复杂度
O(n2): N Square Complexity 平方
O(n3): N CubicComplexity 立方
O(2n): Exponential Growth 指数
O(n!): Factorial 阶乘

(2)各时间复杂度的耗时曲线


从图中可以看出,当n小于5时,不同的时间复杂度耗时差不多。
当n增大时,不同时间复杂度算法耗时差距非常大。所以也就不难理解,大型公司对算法的要求越来越高,是因为当遇到大数据量处理时,不同的算法能力,需要的服务器成本和代码性能是有天壤之别的。

(3)算法面试题的四个套件

算法题的内容确认无误;
思考所有可能解决的办法;
比较这些方法的时间和空间复杂度;
找出最优的解决方案(时间复杂度最低,兼顾内容使用更少的)

(4)递归的时间复杂度分析

将递归的执行顺序画出树形结构,称为递归状态的递归树;
主定理计算时间复杂度
比如:斐波那契数列
Fib: 1, 1, 2, 3, 5, 8, 13, 21, 34...
方法定义:F(1)=1,F(2)=1, F(n)=F(n - 1)+F(n - 2)(n ≥ 3,n ∈ N*)

def fib(n: int):
    if n < 2: return n
    return fib(n-1) + fib(n-2)

绘制递归图,以n=6为例:


常用算法应用主定理:(记住如下算法对应公式,并尝试理解)

2、空间复杂度

空间复杂度和时间复杂度的情况类似,但是更加简单。

数组的长度

如果代码中开了数组,则数组的长度基本就是空间复杂度。
比如:

  • 一维数组,数组长度等于元素个数,则空间复杂度就是O(n)
  • 二维数组,数组长度为n2,则空间复杂度为O(n2)

递归深度

如果代码中有递归,那么递归最大深度,就是空间复杂度的最大值。如果递归里面又开了数组,那么两者中的最大值就是空间复杂度。

实战分析:
详见leetcode的爬楼梯示例:爬楼梯题解

3、小结

  • 常用工具配置
  • 基本功和编程指法
  • 常见的时间、空间复杂度分析 对于开发来说,掌握熟悉的工具和TOP用法,能节省开发中的工具使用效率。 对于顶级工程师来说,对自己代码的时间复杂度和空间复杂度了解,是必备技能。

总结

时间复杂度: 假设入参为n,程序运行的次数与n的关系,即为时间复杂度。
时间复杂度优化顺序:O(1) > O(log n) > O(n) > O(n2) > O(n3) > O(2n) > O(n!)

空间复杂度: 代码中数组的大小或递归深度的最大值。
空间复杂度优化顺序:O(1) > O(log n) > O(n) > O(n2) > O(n3) > O(2n) > O(n!)

为什么复杂度对于代码来说如此重要?
从互联网公司成本来看:

  • 硬件成本:时间复杂度低的代码,可以降低CPU压力,减少服务器的CPU成本;空间复杂度低的代码,可以降低内存占用,减少服务器的内存成本;
  • 产品成本:时间复杂度和空间复杂度越低,程序执行时间越低和遇到的性能故障越少,产品的性能就会越好,越容易获取用户喜欢。
  • 质量评估成本:对设计的算法性能有两种评测方法,一是运行耗时评估,成本高、不稳定、强依赖硬件,而就是时间复杂度和空间复杂度评估,成本低、准确性高。

参考资料:

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,634评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,951评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,427评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,770评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,835评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,799评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,768评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,544评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,979评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,271评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,427评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,121评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,756评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,375评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,579评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,410评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,315评论 2 352