Python数据分析_Pandas06_窗函数

窗函数(window function)经常用在频域信号分析中。我其实不咋个懂,大概是从无限长的信号中截一段出来,然后把这一段做延拓变成一个虚拟的无限长的信号。用来截取的函数就叫窗函数,窗函数又分很多种,什么矩形窗、三角窗、高斯窗。

scipy.signal中有各种我不懂的实现窗函数的方法。浏览了一下,头疼的紧。

那在pandas中也有实现窗函数的方法:rolling()。我呢就不折腾什么信号处理的东西,用金融数据做个小示例好了。

金融时间序列也是一种时间序列数据,前后次序是固定,多为二维数据。例如要看一只股票的平均移动线,就会用到rolling()

先介绍一下这个翻滚函数

DataFrame.rolling(window, 
                  min_periods=None, 
                  freq=None, 
                  center=False, 
                  win_type=None, 
                  on=None, 
                  axis=0)
  • window: 移动窗口的大小。值可以是int(整数值)或offset(偏移)。如果是整数值的话,每个窗口是固定的大小,即包含相同数量的观测值。值为offset(偏移时长,eg:'2s')则指定了每个窗口包含的时间段,每个窗口包含的观测值的数量是不一定的。offset必须在index是时间类型数据时才可以使用。

  • min_periods: 每个窗口最少包含的观测值数量,小于这个值的窗口结果为NA。值可以是int,默认None。offset情况下,默认为1。

  • freq: 弃用。不用管它。

  • center: 把窗口的标签设置为居中。布尔型,默认False,居右。

  • win_type: 窗口的类型。上面介绍的,截取窗的各种函数。字符串类型,默认为None。可用的窗口类型有:

    • boxcar
    • triang
    • blackman
    • hamming
    • bartlett
    • parzen
    • bohman
    • blackmanharris
    • nuttall
    • barthann
    • kaiser (needs beta)
    • gaussian (needs std)
    • general_gaussian (needs power, width)
    • slepian (needs width).
  • on: 可选参数。对于dataframe而言,指定要计算滚动窗口的列。值为列名。

  • axis: int、字符串,默认为0,即对列进行计算。

使用方法,例:

In [2]: df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]})

In [3]: df.rolling(2).sum()
Out[3]:
     B
0  NaN
1  1.0
2  3.0
3  NaN
4  NaN

按tab键可以查看rolling对象可用的方法,如下:

In [4]: r = df.rolling(2)
In [5]: r
Out[5]: Rolling [window=10,center=False,axis=0]

In [6]: r.
   r.agg             r.cov             r.max             r.ndim
   r.aggregate       r.exclusions      r.mean            r.quantile
   r.apply           r.is_datetimelike r.median          r.skew
   r.corr            r.is_freq_type    r.min             r.std
   r.count           r.kurt            r.name            r.sum

注:rolling_mean()这种写法已经淘汰了,现在都是df.rolling().mean()df.rolling().std()这样来写。

例:计算苹果收盘价的平均移动线

获取数据

从雅虎获取苹果公司2016年1月1日至今的股票数据。

import pandas_datareader.data as web

apple = web.DataReader(name='AAPL', 
                       data_source='yahoo', 
                       start='2016-1-1')
print(apple.head())

数据大概是这个样子的:

                  Open        High         Low       Close    Volume  \
Date
2016-01-04  102.610001  105.370003  102.000000  105.349998  67649400
2016-01-05  105.750000  105.849998  102.410004  102.709999  55791000
2016-01-06  100.559998  102.370003   99.870003  100.699997  68457400
2016-01-07   98.680000  100.129997   96.430000   96.449997  81094400
2016-01-08   98.550003   99.110001   96.760002   96.959999  70798000

             Adj Close
Date
2016-01-04  103.057063
2016-01-05  100.474523
2016-01-06   98.508268
2016-01-07   94.350769
2016-01-08   94.849671

收盘价的折线图

为了方便观察滚完了之后的效果,我们把数据都画图呈现出来。

apple['Close'].plot(figsize=(9, 5), grid=True)
plt.show()
收盘价

平均移动线MA

apple['roll_mean'] = apple['Close'].rolling(window=5).mean()
apple[['Close', 'roll_mean']].plot(subplots=True, figsize=(9, 5), grid=True)
plt.show()
收盘价和5日平均移动线

这里窗口大小为5,所以前面四个数据是没有值的。把它们合在一起看看(把subplots改为False)。

收盘价和5日平均移动线合在一起

拉近一点:

直观上看更平滑了。毕竟取五天做平均了,第一天涨第二天跌的这种一平均波动就小了。如果窗口变大会更平滑。

windowsize = [5,10,20]
for i in windowsize:
    apple['roll_mean_'+str(i)] = apple['Close'].rolling(i).mean()
apple[['roll_mean_5','roll_mean_10','roll_mean_20']].plot(figsize=(9, 5), grid=True)
plt.show()

补充

除了算平均值,还可以计算方差、相关、最大最小值等等,大部分的统计量都可以计算,就看你需要了。

另外如果已有的函数不能满足需要,我们还可以用lambdaapply()写自己的方法。

例如(直接复制官网的咯):

mad = lambda x: np.fabs(x - x.mean()).mean()
apple['Close'].rolling(window=5).apply(mad).plot(figsize=(9, 5), grid=True)
plt.show()

这里计算的是平均绝对偏差。

我的图长得漂亮是因为安装了seaborn库,画图之前悄悄加载了一下。

另外,pandas中也有好些金融函数,比如计算指数加权移动平均,就现成的pandas.ewma()。待挖掘的东西好多呢。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容