手撸golang 基本数据结构与算法 最大公约数 欧几里得算法/辗转相除法

缘起

最近阅读<<我的第一本算法书>>(【日】石田保辉;宫崎修一)
本系列笔记拟采用golang练习之

欧几里得算法

欧几里得算法(又称辗转相除法)用于计算两个数的最大公约数,
被称为世界上最古老的算法。
现在人们已无法确定该算法具体的提出时间,
但其最早被发现记载于公元前300年欧几里得的著作中,
因此得以命名。

首先用较小的数字去除较大的数字,求出余数。
接下来再用较小的除数和余数进行mod运算,
重复同样的操作,
余数为0时,最后一次运算中的除数就是最大公约数。

摘自 <<我的第一本算法书>> 【日】石田保辉;宫崎修一
Euclidean-algorithm.jpg

目标

  • 分别用因式分解法和欧几里德算法求解若干随机整数的最大公约数, 并相互验证

设计

  • IGCDCalculator: 最大公约数计算器接口
  • tEuclideanCalculator: 欧几里德算法实现最大公约数求解
  • tNormalGcdCalculator: 因式分解法实现最大公约数求解

单元测试

euclidean_gcd_test.go, 对比验证欧几里德算法和因式分解法, 并比较计算效率

package others

import (
    "learning/gooop/others/euclidean"
    "math/rand"
    "testing"
    "time"
)

func TestEuclideanGCD(t *testing.T) {
    fnAssertTrue := func(b bool, msg string) {
        if !b {
            t.Fatal(msg)
        }
    }

    rnd := rand.New(rand.NewSource(time.Now().UnixNano()))
    sampleCount := 100
    samples := make([]int, sampleCount)
    for i,_ := range samples {
        samples[i] = rnd.Intn(sampleCount) + 1
    }

    fnGenInt := func() int {
        n := rnd.Intn(5) + 1
        x := 1
        for i := 0;i < n;i++ {
            j := rnd.Intn(sampleCount)
            x *= samples[j]
        }
        return x
    }

    c1 := euclidean.EuclideanGCDCalculator
    c2 := euclidean.NormalGCDCalculator

    t.Log("testing 10 samples")
    for i := 0;i < 10;i++ {
        a,b := fnGenInt(), fnGenInt()
        g1 := c1.Calc(a, b)
        g2 := c2.Calc(a, b)
        //t.Logf("a=%v, b=%v, g1=%v, g2=%v", a, b, g1, g2)

        fnAssertTrue(g1 == g2, "expecting g1 == g2")
        fnAssertTrue(a % g1 == 0, "expecting a % gcd == 0")
        fnAssertTrue(b % g1 == 0, "expecting b % gcd == 0")
        t.Logf("gcd(%v, %v) = %v", a, b, g1)
    }
    t.Log("pass testing 10 samples")

    t.Log("\ntesting 100_000 samples")
    for i := 0;i < 100_000;i++ {
        a,b := fnGenInt(), fnGenInt()
        g1 := c1.Calc(a, b)
        g2 := c2.Calc(a, b)

        fnAssertTrue(g1 == g2, "expecting g1 == g2")
        fnAssertTrue(a % g1 == 0, "expecting a % gcd == 0")
        fnAssertTrue(b % g1 == 0, "expecting b % gcd == 0")
    }
    t.Log("pass testing 100_000 samples")

    fnTestCost := func(samples[][] int, c euclidean.IGCDCalculator) int64 {
        t0 := time.Now().UnixNano()
        for i, size := 0, len(samples);i < size;i++ {
            a, b := samples[i][0], samples[i][1]
            g1 := c.Calc(a, b)

            fnAssertTrue(a%g1 == 0, "expecting a % gcd == 0")
            fnAssertTrue(b%g1 == 0, "expecting b % gcd == 0")
        }
        cost := (time.Now().UnixNano() - t0) / 1000_000
        return cost
    }

    pairs := make([][]int, 10_000)
    for i,size := 0, len(pairs);i < size;i++ {
        pairs[i] = []int{ fnGenInt(), fnGenInt() }
    }
    t.Logf("testing 10_000 samples using EuclideanGCDCalculator, cost=%v ms", fnTestCost(pairs, c1))
    t.Logf("testing 10_000 samples using NormalGCDCalculator, cost=%v ms", fnTestCost(pairs, c2))
}

测试输出

显而易见, 欧几里德算法要快上N个数量级

$ go test -v euclidean_gcd_test.go 
=== RUN   TestEuclideanGCD
    euclidean_gcd_test.go:37: testing 10 samples
    euclidean_gcd_test.go:47: gcd(122262, 2135280) = 1722
    euclidean_gcd_test.go:47: gcd(2563600, 180180) = 260
    euclidean_gcd_test.go:47: gcd(5, 2019600) = 5
    euclidean_gcd_test.go:47: gcd(78540, 1547) = 119
    euclidean_gcd_test.go:47: gcd(17476560, 749800800) = 563760
    euclidean_gcd_test.go:47: gcd(395600, 12792) = 8
    euclidean_gcd_test.go:47: gcd(21, 165) = 3
    euclidean_gcd_test.go:47: gcd(7056, 2257) = 1
    euclidean_gcd_test.go:47: gcd(90, 918) = 18
    euclidean_gcd_test.go:47: gcd(90843648, 2522520) = 1176
    euclidean_gcd_test.go:49: pass testing 10 samples
    euclidean_gcd_test.go:51: 
        testing 100_000 samples
    euclidean_gcd_test.go:61: pass testing 100_000 samples
    euclidean_gcd_test.go:80: testing 10_000 samples using EuclideanGCDCalculator, cost=1 ms
    euclidean_gcd_test.go:81: testing 10_000 samples using NormalGCDCalculator, cost=721 ms
--- PASS: TestEuclideanGCD (8.34s)
PASS
ok      command-line-arguments  8.347s

IGCDCalculator.go

最大公约数计算器接口

package euclidean

type IGCDCalculator interface {
    Calc(a, b int) int
}

tEuclideanCalculator.go

欧几里德算法实现最大公约数求解

package euclidean

type tEuclideanCalculator struct {
}

func newEuclideanCalculator() IGCDCalculator {
    return &tEuclideanCalculator{}
}

func (me *tEuclideanCalculator) Calc(a, b int) int {
    if a <= 0 || b <= 0 {
        return 1
    }

    if a == b {
        return a
    }

    bigger := max(a, b)
    smaller := min(a, b)

    for smaller > 0 {
        remaining := bigger % smaller
        if remaining == 0 {
            return smaller
        } else {
            bigger ,smaller = smaller, remaining
        }
    }

    return 1
}

func max(a, b int) int {
    if a >= b {
        return a
    }
    return b
}

func min(a, b int) int {
    if a <= b {
        return a
    }
    return b
}

var EuclideanGCDCalculator = newEuclideanCalculator()

tNormalGcdCalculator.go

因式分解法实现最大公约数求解

package euclidean

import (
    "math"
    "sort"
)

type tNormalGcdCalculator struct {
}

func newNormalGcdCalculator() IGCDCalculator {
    return &tNormalGcdCalculator{}
}


func (me *tNormalGcdCalculator) Calc(a, b int) int {
    if a <= 0 || b <= 0 {
        return 1
    }

    if a == b {
        return a
    }

    aa := me.split(a)
    sort.Sort(sort.IntSlice(aa))

    bb := me.split(b)
    sort.Sort(sort.IntSlice(bb))

    for i, j := len(aa) - 1, len(bb) - 1;i >= 0 && j >= 0; {
        if aa[i] == bb[j] {
            return aa[i]
        }

        if aa[i] > bb[j] {
            i--
        } else {
            j--
        }
    }

    return 1
}

func (me *tNormalGcdCalculator) split(a int) []int {
    to := int(math.Floor(math.Sqrt(float64(a))))
    items := make([]int, 0)
    for i := 1;i <= to;i++ {
        if a % i == 0 {
            items = append(items, i)
            items = append(items, a / i)
        }
    }
    return items
}

var NormalGCDCalculator = newNormalGcdCalculator()

(end)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容