CCAI 2019|梅涛:计算机视觉结合深度学习,迸发全新动力

2019年中国人工智能大会(Chinese Congress on Artificial Intelligence 2019,简称“CCAI 2019”)将于9月21日-22日在青岛召开。梅涛博士将出席大会并担任视觉语音语言多模态论坛共同主席。

梅涛,京东集团技术副总裁,京东人工智能研究院副院长,计算机视觉与多媒体实验室主任,国际电气电子工程师学会和国际模式识别学会会士(Fellow of IEEE and IAPR),国际计算机协会杰出科学家 (Distinguished Scientist of ACM),同时担任中国科学技术大学、复旦大学、香港中文大学(深圳)以及韩国延世大学的客座教授,IEEE 和 ACM 视觉与多媒体汇刊等顶级学术期刊的编委。他主要从事计算机视觉与多媒体领域的基础研究和技术创新,负责京东人工智能事业部计算机视觉产品线的研发。

什么是深度视觉理解?

学术界一直在讨论人工智能能做什么,不能做什么。但对于来自于学术界或者企业界的技术人员来说,其实所研究的问题十几年前就已经存在,而且到现在为止还没有得到完整的解决。有一些人认为人工智能是万能的,那么为什么不能完全解决十几年前的问题呢?梅涛博士用一个十分形象的例子来说明原因:假如我们的任务是敲钉子,最初我们是用锤子敲钉子。现在人工智能、深度学习兴起之后,我们只不过是换了一把好点的锤子,把钉子往里敲了一点,但是仍未完全敲进去。很多人都希望人工智能找到能把钉子完全敲进去的好锤子,但实际上能否找到还不好说。

而在计算机视觉领域之中,视觉理解就是这样一个没有被完全解决的问题。深度视觉理解中的深度有两层含义,一是可以借助深度学习这个工具,二是对视频或者图像内容的理解可以达到很深的地步。除此之外,我们其实还希望计算机在理解的同时能够生成描述,让它不仅能听、能看,而且能写、能说。

计算机视觉研究哪些问题?

在视觉理解领域,把问题按照粒度从小到大排列,可以分为语义分割、目标检测、图片分类、图像描述和视觉故事生成等几个层级。语义分割问题需要理解到确定每个像素属于哪一类;高一级是目标检测,目标检测不关心每个像素的类别,只关心能不能把目标检测出来;如果不关心目标的位置,只关心图片中具体有哪些目标,就是图片分类;粒度再粗一些,将图片对应标签通过自然语言理解生成一句话,就是所谓的图像描述;最后一级叫故事生成,即基于图片序列生成一个完整的用自然语言表达的故事。

对于视觉理解部分,深度学习技术的出现建立了计算机视觉和自然语言处理之间连接的桥梁。这个桥梁也可以是双向的,既可以从视觉生成文字(如caption、sentiment、visual question answering等),也可以从文字到视觉(如generation、search)。

计算机视觉研究的未来

然而,相较于学术界的进展,在真实的应用场景中,我们仍面临着技术不够成熟、鲁棒性不足等问题,离真正落地仍有很长的路要走。梅涛表示,就目前技术所达到的水平来说,深度学习可以接近五岁小孩的水平。五岁的小孩还不太懂事,让他做图像分割,不一定做的比机器好。我们希望机器人视觉能力可以达到七岁小孩的水平,也就是一年级小朋友的识图水平,比如可以看图说话,可以看图回答一些简单的问题。

在过去的几年,尤其是2012年深度学习在ImageNet图像分类任务中取得突破之后,计算机视觉技术在“结构化”(或标准化的)图像识别领域的商业应用中取得了很大的成功,例如人脸识别、光学字符识别(OCR),以及特定种类或细分类别的图像识别(如车型、商品图像)等。现在很多的明星AI初创公司都是将深度学习应用在这些“结构化”的图像识别领域。如果我们将这些应用称为计算机视觉技术的商业化1.0时代,那么我们就要为即将到来的2.0时代做好技术储备和工程化的打磨。在2.0时代,我们遇到的视觉信号往往很难“结构化”,我们遇到的场景也很难“标准化”。例如,在安防领域,我们将面对更多的非人脸识别的需求,视频分析和结构化也会是刚需。如何在这些更大的、非标准化的场景中应用计算机视觉技术是对我们的挑战。

今天,深度学习技术为计算机视觉领域带来了全新的动力,这将只是一个开始,随着多模态信息的加入(如交互、语音、文本等),计算机将能够更好地理解这个多维的世界,为人工智能全方位服务人类提供可能。

更多精彩内容,详见CCAI 2019官方网站...

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,372评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,368评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,415评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,157评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,171评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,125评论 1 297
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,028评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,887评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,310评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,533评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,690评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,411评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,004评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,659评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,812评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,693评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,577评论 2 353

推荐阅读更多精彩内容

  • 作者:Rockelbel,两年互联网PM,AI转型学习中,偏好NLP方向 上一篇文章介绍了机器学习和神经网络等一系...
    Rockelbel阅读 1,334评论 0 6
  • 这些年计算机视觉识别和搜索这个领域非常热闹,后期出现了很多的创业公司,大公司也在这方面也花了很多力气在做。做视觉搜...
    方弟阅读 6,486评论 6 24
  • 以下内容整理自 2017 年 6 月 29 日由“趣直播--知识直播平台”邀请的嘉宾实录。分享嘉宾: 罗韵 目前,...
    ZeroZone零域阅读 2,419评论 2 10
  • 新年的第一天,我玩了一会模拟人生,开始有一搭没一搭的开始学法语。昨天看到群里面S的消息,我的心里有点起伏。但是很快...
    生姜27阅读 104评论 0 0
  • HTML用来编排内容,CSS用来制定样式,JavaScript用来控制行为 我们是通过DOM(Document O...
    余鹿阅读 610评论 0 0