作者,Evil Genius
今天我们更新脚本,cell2location多样本的分析结果,从多样本的角度分析共定位。
今天我们详细更新
首先是cell2location 的分析结果,就是获得的细胞矩阵。
文件格式,样本名称 + 疾病状态 + 细胞矩阵。
同时准备好10X SpaceRanger的分析结果,放在folder文件夹下面
第一步,对空间单样本进行共定位分析,mistyR,写个循环,把所有样本都分析好,每个样本的结果放在/results/misty/下面。
library(tidyverse)
library(Seurat)
library(mistyR)
library(Matrix)
source('misty_utilities.R')
future::plan(future::multisession)
# Pipeline definition:
run_colocalization <- function(slide,
assay,
useful_features,
out_label,
misty_out_alias = "./results/misty/main_") {
# Define assay of each view ---------------
view_assays <- list("main" = assay,
"juxta" = assay)
# Define features of each view ------------
view_features <- list("main" = useful_features,
"juxta" = useful_features)
# Define spatial context of each view -----
view_types <- list("main" = "intra",
"juxta" = "juxta")
# Define additional parameters (l in case of paraview,
# n of neighbors in case of juxta) --------
view_params <- list("main" = NULL,
"juxta" = 6)
misty_out <- paste0(misty_out_alias,
out_label, "_", assay)
run_misty_seurat(visium.slide = slide,
view.assays = view_assays,
view.features = view_features,
view.types = view_types,
view.params = view_params,
spot.ids = NULL,
out.alias = misty_out)
return(misty_out)
}
read_c2l <- function(file_path, slide_id) {
cell2loc <- read.table(file_path, sep = ",", header = TRUE)
row.names(cell2loc) <- cell2loc$spot_id
cell2loc$spot_id <- NULL
cell2loc$Lymphatic.Endothelial <- NULL
assay <- subset(cell2loc, cell2loc$sample == slide_id)
rownames(assay) <- sub(paste("^", slide_id, "_", sep = ""), "", rownames(assay))
assay$sample <- NULL
assay$Disease <- NULL
assay <- Matrix(as.matrix(assay), sparse = TRUE)
return(assay)}
####folder下面是10X SpaceRanger的分析结果。
folder <- "/data/Visium/rawdata/"
slide_files <- list.files(folder)
map(slide_files, function(slide_file){
print(slide_file)
slide_id <- slide_file
print(slide_id)
slide <- Load10X_Spatial(
data.dir= paste(folder, slide_id, sep=""),
filename = "filtered_feature_bc_matrix.h5")
# Read and process the CSV file with the cell2loc results
read_c2l <- function(file_path, slide_id) {
cell2loc <- read.table(file_path, sep = ",", header = TRUE)
row.names(cell2loc) <- cell2loc$spot_id
cell2loc$spot_id <- NULL
cell2loc$Lymphatic.Endothelial <- NULL
assay <- subset(cell2loc, cell2loc$sample == slide_id)
rownames(assay) <- sub(paste("^", slide_id, "_", sep = ""), "", rownames(assay))
assay$sample <- NULL
assay$Disease <- NULL
assay <- Matrix(as.matrix(assay), sparse = TRUE)
return(assay)}
# Spot deconvolutions for the Main Cell types
c2lmain_assay <- read_c2l("c2l_main.csv", slide_id)
slide[["c2lmain"]] <- CreateAssayObject(data = t(c2lmain_assay))
# Spot deconvolutions for the Subcluster
c2lsub_assay <- read_c2l("c2l_sub.csv", slide_id)
slide[["c2lsub"]] <- CreateAssayObject(data = t(c2lsub_assay))
# Define the assays to be used
assays <- c("c2lmain", "c2lsub")
# Loop over each assay
for (assay in assays) {
# Set the default assay for the slide
DefaultAssay(slide) <- assay
# Get the useful features (row names)
useful_features <- rownames(slide)
# Run colocalization analysis
mout <- run_colocalization(slide = slide,
useful_features = useful_features,
out_label = slide_id,
assay = assay,
misty_out_alias = paste("./results/misty/", assay, "/", sep=""))
# Collect results
misty_res_slide <- collect_results(mout)
#importances <- rbind(importances, misty_res_slide$importances)
#saveRDS(importances, file = "./results/misty/importances.rds")
# Save results to an RDS file
saveRDS(misty_res_slide, file = paste0("./results/misty/", slide_id, "_", assay, "/misty_res_slide_", slide_id, ".rds"))
# Create a plot folder
plot_folder <- paste0(mout, "/plots")
system(paste0("mkdir ", plot_folder))
# Create a PDF file for summary plots
pdf(file = paste0(plot_folder, "/", slide_id, "_", "summary_plots_", assay, ".pdf"))
# Plot improvement stats and view contributions
mistyR::plot_improvement_stats(misty_res_slide)
mistyR::plot_view_contributions(misty_res_slide)
# Plot interaction heatmap and communities for intra and juxta_5
mistyR::plot_interaction_heatmap(misty_res_slide, "intra", cutoff = 0)
mistyR::plot_interaction_communities(misty_res_slide, "intra", cutoff = 0.5)
mistyR::plot_interaction_heatmap(misty_res_slide, "juxta_6", cutoff = 0)
mistyR::plot_interaction_communities(misty_res_slide, "juxta_6", cutoff = 0.5)
dev.off()
}
})
每个样本下面的结果如下
再来,多样本的联合共定位分析