GAN在医学图像处理中的应用——awesome-gan-for-medical-imaging

Awesome GAN for Medical Imaging

A curated list of awesome GAN resources in medical imaging, inspired by the other awesome-* initiatives.

For a complete list of GANs in general computer vision, please visit really-awesome-gan.

To complement or correct it, please contact me at xiy525@mail.usask.ca or send a pull request.

Overview

Review

Low Dose CT Denoising

Segmentation

Detection

Medical Image Synthesis

Reconstruction

Classification

Registration

Others

Review

[Generative Adversarial Network in Medical Imaging: A Review] (This is my own review covering 103 articles in commit e9c234e) [scholar] [arXiv]

[GANs for Medical Image Analysis] [scholar] [arXiv]

[Generative adversarial networks and adversarial methods in biomedical image analysis] [scholar] [arXiv]

Low Dose CT Denoising

[Generative Adversarial Networks for Noise Reduction in Low-Dose CT] [scholar] [TMI]

[Low Dose CT Image Denoising Using a Generative Adversarial Network with Wasserstein Distance and Perceptual Loss] [scholar] [arXiv]

[Sharpness-aware Low dose CT denoising using conditional generative adversarial network] [scholar] [arXiv] [JDI] [code]

[Cycle Consistent Adversarial Denoising Network for Multiphase Coronary CT Angiography] [scholar] [arXiv]

[Structure-sensitive Multi-scale Deep Neural Network for Low-Dose CT Denoising] [scholar] [arXiv]

[3-D Convolutional Encoder-Decoder Network for Low-Dose CT via Transfer Learning From a 2-D Trained Network] [scholar] [arXiv]

[CT Image Enhancement Using Stacked Generative Adversarial Networks and Transfer Learning for Lesion Segmentation Improvement] [scholar] [MLMI2018]

Segmentation

[SegAN: Adversarial Network with Multi-scale L1 Loss for Medical Image Segmentation] [scholar] [arXiv]

[Adversarial training and dilated convolutions for brain MRI segmentation] [scholar] [arXiv]

[Retinal Vessel Segmentation in Fundoscopic Images with Generative Adversarial Networks] [scholar] [arXiv]

[Automatic Liver Segmentation Using an Adversarial Image-to-Image Network] [scholar] [arXiv]

[Deep Adversarial Networks for Biomedical Image Segmentation Utilizing Unannotated Images] [scholar] [MICCAI17]

[SCAN: Structure Correcting Adversarial Network for Organ Segmentation in Chest X-rays] [scholar] [arXiv]

[Adversarial Deep Structured Nets for Mass Segmentation from Mammograms] [scholar] [arXiv] [code]

[Adversarial Synthesis Learning Enables Segmentation Without Target Modality Ground Truth] [scholar] [arXiv]

[Adversarial neural networks for basal membrane segmentation of microinvasive cervix carcinoma in histopathology images] [scholar] [ICMLC]

[Unsupervised domain adaptation in brain lesion segmentation with adversarial networks] [scholar] [IPMI2017]

[whole heart and great vessel segmentation with context aware generative adversarial network] [scholar] [BM]

[Generative Adversarial Neural Networks for Pigmented and Non-Pigmented Skin Lesions Detection in Clinical Images] [scholar] [CSCS2017]

[Generative Adversarial Networks to Segment Skin Lesions] [scholar] [ISBI2018]

[A conditional adversarial network for semantic segmentation of brain tumor] [scholar] [arXiv]

[Brain Tumor Segmentation Using an Adversarial Network] [scholar] [MICCAI Brainlesion workshop]

[Joint Optic Disc and Cup Segmentation using Fully Convolutional and Adversarial Networks] [scholar] [OMIA2017]

[Splenomegaly Segmentation using Global Convolutional Kernels and Conditional Generative Adversarial Networks] [scholar] [SPIE MI]

[CC-GAN A Robust Transfer-Learning Framework for HEp-2 Specimen Image Segmentation] [scholar] [TA]

[Unsupervised Cross-Modality Domain Adaptation of ConvNets for Biomedical Image Segmentations with Adversarial Loss] [scholar] [arXiv]

[Retinal Vessel Segmentation under Extreme Low Annotation: A Generative Adversarial Network Approach] [scholar] [arXiv]

[Conditional Generative Refinement Adversarial Networks for Unbalanced Medical Image Semantic Segmentation] [scholar] [arXiv]

[Few-shot 3D Multi-modal Medical Image Segmentation using Generative Adversarial Learning] [scholar] [arXiv]

[Multi-input and dataset-invariant adversarial learning (MDAL) for left and right-ventricular coverage estimation in cardiac MRI] [scholar] [MICCAI2018]

[Tumor-Aware, Adversarial Domain Adaptation from CT to MRI for Lung Cancer Segmentation] [scholar] [MICCAI2018]

Detection

[Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery] [scholar] [arXiv]

[Generative adversarial networks for brain lesion detection] [scholar] [JMI]

[Adversarial Networks for the Detection of Aggressive Prostate Cancer] [scholar] [arXiv]

[Visual Feature Attribution using Wasserstein GANs] [scholar] [arXiv]

[Unsupervised Detection of Lesions in Brain MRI using constrained adversarial auto-encoders] [scholar] [arXiv]

[Btrfly Net: Vertebrae Labelling with Energy-based Adversarial Learning of Local Spine Prior] [scholar] [arXiv]

[Deep Adversarial Context-Aware Landmark Detection for Ultrasound Imaging] [scholar] [arXiv]

[Multi-input and dataset-invariant adversarial learning (MDAL) for left and right-ventricular coverage estimation in cardiac MRI] [scholar] [MICCAI2018]

参考自:https://github.com/xinario/awesome-gan-for-medical-imaging

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,172评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,346评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,788评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,299评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,409评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,467评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,476评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,262评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,699评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,994评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,167评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,827评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,499评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,149评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,387评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,028评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,055评论 2 352

推荐阅读更多精彩内容