最简单的神经网络

最简单的神经网络

准备训练数据

随机生成50个数据,用作训练数据

x = np.linspace(1, 100)

最简单的神经网络拟合,y=ax+b,所有设置y为

y = 2 * x + 3

不过,为了符合实际情况,可用适当增加一些噪声。

noise = torch.randn(50)
y = 2 * x + 3+noise.numpy()

绘制x,y的图象如下


构建神经网络

torch里面可以基于nn.Module类写自己的神经网络,这里使用最简单的线性层。

class nn(nn.Module):
    def __init__(self, in_features=1, mid_features=5, out_features=1):
        super(nn, self).__init__()
        self.layer1 = nn.Linear(in_features, mid_features)
        self.layer2 = nn.Linear(mid_features, out_features)
        self.layer = nn.Linear(mid_features, mid_features)

    def forward(self, x):
        x = self.layer2(x)
        for i in range(1):
            x = self.layer(x)
        x = self.layer2(x)
        return x

之后则是设置损失函数,优化器,依旧选择最简单的。

criterion = nn.L1Loss()
optimizer = optim.RMSprop(model.parameters())

其中L1形式的损失函数就在lasso loss,loss=(y-X\theta)+C|\theta|
RMSProp算法的全称叫 Root Mean Square Prop。
考虑到训练时1-100,那么预测则选取50-150。
迭代计算,结果如下:


全部代码

x = np.linspace(1, 100)
noise = torch.randn(50)
y = 2 * x + 3+noise.numpy()
plt.plot(x, y)
plt.show()
dataset = []
for i, j in zip(x, y):
    dataset.append([i, j])
epochs = 10
model = Nn(1, 1)
criterion = nn.L1Loss()
optimizer = optim.RMSprop(model.parameters())
dataset = torch.tensor(dataset, dtype=torch.float, requires_grad=True)
for times in range(epochs):
    for i, data in enumerate(dataset, 0):
        x, label = data
        optimizer.zero_grad()
        out = model(x.unsqueeze(dim=0))
        loss = criterion(out, label.unsqueeze(dim=0))
        print("loss:", loss.data.item())
        loss.backward()
        optimizer.step()
x = np.linspace(50, 150)
y = 2 * x + 3
dataset = []
for i, j in zip(x, y):
    dataset.append([i, j])
dataset = torch.tensor(dataset, dtype=torch.float, requires_grad=True)
pred_y = []
pred_x = x
for i, data in enumerate(dataset, 0):
    x, label = data
    optimizer.zero_grad()
    out = model(x.unsqueeze(dim=0))
    pred_y.append(out)
plt.plot(pred_x, pred_y)
print(pred_x, pred_y)
plt.show()

有时间给出最简单神经网络的解析

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,324评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,356评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,328评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,147评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,160评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,115评论 1 296
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,025评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,867评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,307评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,528评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,688评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,409评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,001评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,657评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,811评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,685评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,573评论 2 353

推荐阅读更多精彩内容