基础篇:一、多层感知器

    在介绍对抗网络之前,我们应该了解多层感知器的原理。

    多层感知器是一种人工神经网络,属于非参数估计,可以用于解决分类和回归问题。我们先来了解下神经网络的背景,然后再来介绍下感知器。



    神经网络

    感知器

    多层感知器


一、神经网络

人工神经网络,顾名思义起源于模拟人脑,其目的是理解人脑功能,认知科学家和神经学家共同构建了神经网络模型,并开展了模拟研究。这项技术与工程结合之后,可以帮助我们建立更好的计算机系统。

Marr认为理解一个信息处理系统具有三个层面,总称为分析层面(levels of analysis),即:

计算理论:对应计算目标和任务的抽象定义;

表示和算法:关于输入/输出如何表示以及从输入-->输出的算法说明;

硬件实现:系统的实际物理实现;

这里需要注意的是,对于同一个计算理论,可以有多种表示和算法;而对于同一种表示和算法,可以有多种硬件实现。比如对于自然和人工飞行器,计算理论都是可以“飞行”,算法就是利用“空气动力学”,而实现方式一个是“拍打翅膀”,一个是“发动引擎”。

人脑可以看作是学习或模式识别的一种硬件实现。如果我们可以逆向分析,从这种实现中提取出人脑使用的表示和算法,并且进一步获得计算理论,那么我们就可以考虑使用另一种表示和算法,然后得到更适合我们掌握的计算机硬件的实现。

神经网络可以应用于并行处理。常见的并行架构有单指令多数据(SIMD)机多指令多数据(MSMD)机, 一种是所有的处理器执行相同的指令处理不同的数据;一种是不同的处理器执行不同的指令处理不同的数据。SIMD实现较为简单,但是应用意义小;MIMD实现复杂,但是现实中多数为此种情况。

神经网络提出了一种介于中间的模式,即引入了中间的少量局部存储器,使用处理器的指令在存储器上输入不同来实现不同的功能。其中每个处理器对应一个神经元,局部参数对应它的突出权重, 而整个结构就是一个神经网络。所以,人工神经网络是一种我们可以实用当前技术构建的、利用并行硬件的方法。

二、感知器

感知器(Perception)是基本的处理元素,它具有输入、输出,每个输入关联一个连接权重(connection weight),然后输出是输入的加权和。


感知器

上图就是一个单层的感知器,输入分别是X0、X1、X2,输出Y是输入的加权和:

Y = W0X0 + W1X1 + W2X2

在实际的使用中,我们的主要任务就是通过数据训练确定参数权重。在训练神经网络时,如果未提供全部样本二室逐个提供实例,则我们通常使用在线学习,然后在每个实例学习之后立刻调整网络参数,以这种方式使得网络缓慢得及时调整。具体收敛可是使用梯度下降算法。

感知器具有很强的表现力,比如布尔函数AND和OR都可以使用上面的单层感知器实现。但是对于XOR操作则不行,因为单层感知器只能模拟线性函数,对于XOR这种非线性函数,我们需要新型的感知器。

三、多层感知器

对于XOR这种非线性函数的模拟,我们需要采用多层感知器,即在最初的输入和输出层之间隐藏着一到多个层,比如:


多层感知器

多层感知器(Multiayer perceptrons, MLP)可以实现非线性判别式,如果用于回归,可以逼近输入的非线性函数。其实MLP可以用于“普适近似”,即可以证明:具有连续输入和输出的任何函数都可以用MLP近似,已经证明,具有一个隐藏层(隐藏节点个数不限)的MLP可以学习输入的任意非线性函数。

训练MLP常用的是向后传播(backpropagation),这主要是因为在我们收敛误差函数的时候,使用链接规则计算梯度:

原文参考:http://blog.chinaunix.net/uid-26275986-id-4985394.html

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,657评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,889评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,057评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,509评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,562评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,443评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,251评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,129评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,561评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,779评论 3 335
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,902评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,621评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,220评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,838评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,971评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,025评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,843评论 2 354

推荐阅读更多精彩内容