limma的两个弟弟:edgeR和DESeq2

01—研究背景

上一篇公众号我们为大家详细的介绍了R软件包limma筛选差异基因,limma包做差异分析要求数据满足正态分布或近似正态分布,如基因芯片、TPM格式的高通量测序数据。随着高通量测序价格的降低,RNA-seq测序技术与芯片测序技术相比具有通量高,GC偏好性较小,能发现未知的转录本等特点[1],越来越多的科研人员选择用转录组高通量测序技术来代替传统的芯片测序技术。高通量测序得到的原始数据为fastq文件,经过数据质控,比对,定量之后得到count矩阵。通常认为Count数据不符合正态分布而服从泊松分布。对于count数据来说,用limma包做差异分析,误差较大,所以小编今天给大家介绍另外两个计算差异基因的方法,分别为edgeR[2]和DESeq2[3]。值得一提的是edgeR和limma是由一个团队开发的,算法有点过时了,DESeq2目前使用频率较高。我们平台不但集成了这两个主流的分析方法,同时对差异分析结果进行可视化,只需输入表达矩阵和分组信息,点击鼠标就可完成整个差异分析,老板再也不用催我敲代码了。

02—使用方法

1.输入网址:http://sangerbox.com/Tool

点击“转录组Count数据差异分析工具”即可进入分析界面

2.输入数据格式 表达矩阵:行名为ENSG ID,这里小编根据团队的项目经验说明一下,这里使用的是ENSG ID ,并没有将其转化为Gene Symbol。原因是由于将ENSG ID转化为Gene Symbol,如果将一个Gene Symbol对应多个ENSG ID去中值或者取均值,得到的新矩阵会含有小数值。而edgeR和DEseq2这两个软件要求输入的文件中所有数值必须要是整数,所以小编以前在做项目的过程中先用ENSG ID做差异分析,然后得到差异分析结果以后,在将ENSG ID转化为Gene Symbol。列名为样本名称,下图所示。


分组矩阵:共两列,第一列为样本名称,要与表达矩阵的样本名一一对应,第二列为样本的分组信息,如normal与tumour如下图所示


3.参数设置


4.结果目录:

在个人中心有结果目录,如果事先不指定运行结果目录,默认输入到Count_DEG目录下,结果如下图所示:


参考文献

[1] Agarwal A, Koppstein D, Rozowsky J, et al. Comparison and calibration of transcriptome data from RNA-Seq and tiling arrays. BMC Genomics. 2010;11:383. Published 2010 Jun 17.[2] Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139‐140. [3] Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,544评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,430评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,764评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,193评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,216评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,182评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,063评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,917评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,329评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,543评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,722评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,425评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,019评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,671评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,825评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,729评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,614评论 2 353