请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。路径可以从矩阵中的任意一格开始,每一步可以在矩阵中向左、右、上、下移动一格。如果一条路径经过了矩阵的某一格,那么该路径不能再次进入该格子。例如,在下面的3×4的矩阵中包含一条字符串“bfce”的路径(路径中的字母用加粗标出)。
[["a","b","c","e"],
["s","f","c","s"],
["a","d","e","e"]]
但矩阵中不包含字符串“abfb”的路径,因为字符串的第一个字符b占据了矩阵中的第一行第二个格子之后,路径不能再次进入这个格子。
示例 :
输入:board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCCED"
输出:true
解答:
class Solution {
private:
enum Direction {None, Up, Down, Left, Right};
public:
bool exist(vector<vector<char>>& board, string word) {
if(word.size() <= 0) {
return false;
}
string stepword = word.substr(1);
for(int i = 0; i < board.size(); i++) {
for(int j = 0; j < board[0].size(); j++) {
if(board[i][j] == word[0]) {
char tmp = board[i][j];
board[i][j] = '\0';
bool stepresult = search(board, stepword, i, j, None);
if(stepresult) {
return true;
}
board[i][j] = tmp;
}
}
}
return false;
}
bool search(vector<vector<char>>& board, string word, int i, int j, Direction d) {
if(word.size() <= 0) {
return true;
}
char tmp;
string searchword = word.substr(1);
// up
if(d != Up && i > 0 && word[0] == board[i-1][j]) {
tmp = board[i-1][j];
board[i-1][j] = '\0';
if(search(board, searchword, i-1, j, Down)) {
return true;
}
board[i-1][j] = tmp;
}
// down
if(d != Down && i < board.size() - 1 && word[0] == board[i+1][j]) {
tmp = board[i+1][j];
board[i+1][j] = '\0';
if(search(board, searchword, i+1, j, Up)) {
return true;
}
board[i+1][j] = tmp;
}
// left
if(d != Left && j > 0 && word[0] == board[i][j-1]) {
tmp = board[i][j-1];
board[i][j-1] = '\0';
if(search(board, searchword, i, j-1, Right)) {
return true;
}
board[i][j-1] = tmp;
}
// right
if(d != Right && j < board[0].size() - 1 && word[0] == board[i][j+1]) {
tmp = board[i][j+1];
board[i][j+1] = '\0';
if(search(board, searchword, i, j+1, Left)) {
return true;
}
board[i][j+1] = tmp;
}
return false;
}
};
思路:
这道题使用dfs进行的深度优先搜索框架进行搜索,时间复杂度是O(3^k * M * N),一共M*N个可选起点,k为字符串长度,每个点平均有3个方向可以搜索(不包含走回头路的情况)。一个小trick是当一个字符匹配,切割匹配字符串为k-1(k为当前字符串长度),将棋盘的当前字符标为一个空值,执行dfs后再在棋盘上还原原字符,这样可以达到空间复杂度O(1)。