m基于SPA和积译码算法的LDPC误码率matlab仿真

1.算法仿真效果

matlab2022a仿真结果如下:


2.算法涉及理论知识概要

LDPC ( Low-density Parity-check,低密度奇偶校验)码是由 Gallager 在1963 年提出的一类具有稀疏校验矩阵的线性分组码 (linear block codes),然而在接下来的 30 年来由于计算能力的不足,它一直被人们忽视。1996年,D MacKay、M Neal 等人对它重新进行了研究,发现 LDPC 码具有逼近香农极限的优异性能。并且具有译码复杂度低、可并行译码以及译码错误的可检测性等特点,从而成为了信道编码理论新的研究热点。


Mckay ,Luby 提出的非正则 LDPC 码将 LDPC 码的概念推广。非正则LDPC码 的性能不仅优于正则 LDPC 码,甚至还优于 Turbo 码的性能,是目前己知的最接近香农限的码。


在LDPC码的校验矩阵中,如果行列重量固定为(P,Y),即每个校验节点有Y个变量节点参与校验,每个变量节点参与P个校验节点,我们称之为正则LDPC码。Gallager最初提出的Gallager码就具有这种性质。从编码二分图的角度来看,这种LDPC码的变量节点度数全部为P,而校验节点的度数都为Y。我们还可以适当放宽上述正则LDPC码的条件,行列重量的均值可以不是一个整数,但行列重量尽量服从均匀分布。另外为了保证LDPC码的二分图上不存在长度为4的圈。我们通常要求行与行以及列与列之间的交叠部分重量不超过1,所谓交叠部分即任意两列或两行的相同部分。我们可以将正则LDPC码校验矩阵H的特征概括如下:


1. H的每行行重固定为P,每列列重固定为Y。


2. 任意两行(列)之间同为1的列(行)数(称为重叠数)不超过1,即H矩阵中不含四角为1 的小方阵,也即无4线循环。


3. 行重P和列重Y相对于H的行数M、列数N很小,H是个稀疏矩阵。


在正则LDPC码的校验矩阵中。行重和列重的均值保持不变,所以校验矩阵中1的个数随着码长的增加而线性增长,整个校验矩阵的元素个数则成平方增长。当码长达到一定长度时,校验矩阵H是非常稀疏的低密度矩阵。对于正则的LDPC码,MacKay给出了以下两个结论:


1. 对于任意给定列重大于3的LDPC码,存在某个小于信道传输容量且大于零的速率r ,当码长足够长时,可以实现以小于r且不为零的速率无差错的传输。也就是说任意给定一个不为零的传输速率r,存在一个小于相应香农限的噪声门限,当信道噪声低于该门限且码长足够长的时候,可以实现以r速率无差错的传输。


2. 当LDPC码的校验矩阵H的列重Y不固定,而是根据信道特性和传输速率来确定时,则一定可以找到一个最佳码,实现在任意小于信道传输容量的速率下无差错的传输。


对LDPC码的定义都是在二元域基础上的,MaKcay对上述二元域的LDPC码又进行了推广。如果定义中的域不限于二元域就可以得到多元域GF(q)上的LDPC码。多元域上的LDPC码具有较二进制LDPC码更好的性能,而且实践表明在越大的域上构造的LDPC码,译码性能就越好,比如在GF(16)上构造的正则码性能己经和Turbo码相差无几。多元域LDPC码之所以拥有如此优异的性能,是因为它有比二元域LDPC码更重的列重,同时还有和二元域LDPC码相似的二分图结构。


码率是0.5,码长是2304,nb=24,kb=12,


基础矩阵为


3.MATLAB核心程序

H       = func_H(Hb,eye(96));

[Rh,Ch] = size(H);

x        = [ones(1,Ch)];

EbN0     = [0:0.5:2];



Max_iter = 1;



for ij = 1:length(EbN0)

for k = 1:100

[k,ij]

sigma = sqrt(1/(10^(EbN0(ij)/10)));

%实际验证过程中,这个位置加入你的编码模块

code  = (2*x-1);

r     = code+randn(size(x))*sigma;

%对应PPT公式

Lv    = 2*r/(sigma^2);

%SPA算法

[ber,v1] = Sum_product_algorithm(Lv,H,Max_iter);

%输入变量

x(Rh+1:Ch);

%输出变量

v1(Rh+1:Ch);

%计算错误数据

err1(k,ij)=1-length(find(v1(Rh+1:Ch)==x(Rh+1:Ch)))/length(x(Rh+1:Ch));

end

end


if Max_iter==1

save R1.mat EbN0 err1

end

if Max_iter==5

save R2.mat EbN0 err1

end

if Max_iter==10

save R3.mat EbN0 err1

end

if Max_iter==25

save R4.mat EbN0 err1

end

if Max_iter==100

save R5.mat EbN0 err1

end



figure;

semilogy(EbN0,mean(err1,1),'b-o');

grid on

xlabel('EBNO');

ylabel('ber');

©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容