1.1 Dataset基类 继承时需实现的方法:
raw_file_names()、processed_file_names()、download()、process() 额外需要实现的方法:len()获取数据集中样本数量,get()实现加载单个图的操作
基本思路:将小图的邻接矩阵存储在大图邻接矩阵的对角线上
优势:
不需要修改GNN算法
没有额外计算或内存开销
节点序号增值:修改__inc__()和__cat_dim__()函数
图的匹配:使用一个Data对象存储多个图,并使用follow_batch参数指定要维护batch信息的属性
二部图:不同类型的节点数量不一致,edge_index边的源节点与目标节点进行增值操作不同
新维度的拼接:图级别属性或预测目标,通过__cat_dim__()返回None的连接维度实现
importtorchfromtorch_geometric.dataimportData,DataLoaderimportlogging logger=logging.getLogger()logger.setLevel(logging.ERROR)Copy to clipboardErrorCopied
classPairData(Data):def__init__(self,edge_index_s,x_s,edge_index_t,x_t):super(PairData,self).__init__()self.edge_index_s=edge_index_s self.x_s=x_s self.edge_index_t=edge_index_t self.x_t=x_tdef__inc__(self,key,value):ifkey=='edge_index_s':returnself.x_s.size(0)ifkey=='edge_index_t':returnself.x_t.size(0)else:returnsuper().__inc__(key,value)Copy to clipboardErrorCopied
edge_index_s=torch.tensor([[0,0,0,0],[1,2,3,4],])x_s=torch.randn(5,16)# 5 nodes.edge_index_t=torch.tensor([[0,0,0],[1,2,3],])x_t=torch.randn(4,16)# 4 nodes.data=PairData(edge_index_s,x_s,edge_index_t,x_t)data_list=[data,data]loader=DataLoader(data_list,batch_size=2)batch=next(iter(loader))print(batch)print(batch.edge_index_s)print(batch.edge_index_t)Copy to clipboardErrorCopied
Batch(edge_index_s=[2, 8], edge_index_t=[2, 6], x_s=[10, 16], x_t=[8, 16])
tensor([[0, 0, 0, 0, 5, 5, 5, 5],
[1, 2, 3, 4, 6, 7, 8, 9]])
tensor([[0, 0, 0, 4, 4, 4],
[1, 2, 3, 5, 6, 7]])Copy to clipboardErrorCopied
# 为节点特征x_s和x_t创建了batch对象loader=DataLoader(data_list,batch_size=2,follow_batch=['x_s','x_t'])batch=next(iter(loader))print(batch)print(batch.x_s_batch)print(batch.x_t_batch)Copy to clipboardErrorCopied
Batch(edge_index_s=[2, 8], edge_index_t=[2, 6], x_s=[10, 16], x_s_batch=[10], x_t=[8, 16], x_t_batch=[8])
tensor([0, 0, 0, 0, 0, 1, 1, 1, 1, 1])
tensor([0, 0, 0, 0, 1, 1, 1, 1])Copy to clipboardErrorCopied
classBipartiteData(Data):def__init__(self,edge_index,x_s,x_t):super(BipartiteData,self).__init__()self.edge_index=edge_index self.x_s=x_s self.x_t=x_tdef__inc__(self,key,value):ifkey=='edge_index':returntorch.tensor([[self.x_s.size(0)],[self.x_t.size(0)]])else:returnsuper().__inc__(key,value)Copy to clipboardErrorCopied
edge_index=torch.tensor([[0,0,1,1],[0,1,1,2],])x_s=torch.randn(2,16)# 2 nodes.x_t=torch.randn(3,16)# 3 nodes.data=BipartiteData(edge_index,x_s,x_t)data_list=[data,data]loader=DataLoader(data_list,batch_size=2)batch=next(iter(loader))print(batch)print(batch.edge_index)Copy to clipboardErrorCopied
Batch(batch=[6], edge_index=[2, 8], ptr=[3], x_s=[4, 16], x_t=[6, 16])
tensor([[0, 0, 1, 1, 2, 2, 3, 3],
[0, 1, 1, 2, 3, 4, 4, 5]])Copy to clipboardErrorCopied
classMyData(Data):def__cat_dim__(self,key,item):ifkey=='foo':returnNoneelse:returnsuper().__cat_dim__(key,item)edge_index=torch.tensor([[0,1,1,2],[1,0,2,1],])foo=torch.randn(16)data=MyData(edge_index=edge_index,foo=foo)data_list=[data,data]loader=DataLoader(data_list,batch_size=2)batch=next(iter(loader))print(batch)Copy to clipboardErrorCopied
Batch(batch=[6], edge_index=[2, 8], foo=[2, 16], ptr=[3])Copy to clipboardErrorCopied
importosimportos.pathasospimportpandasaspdimporttorchfromogb.utilsimportsmiles2graphfromogb.utils.torch_utilimportreplace_numpy_with_torchtensorfromogb.utils.urlimportdownload_url,extract_zipfromrdkitimportRDLoggerfromtorch_geometric.dataimportData,DatasetimportshutilRDLogger.DisableLog('rdApp.*')classMyPCQM4MDataset(Dataset):def__init__(self,root):self.url='https://dgl-data.s3-accelerate.amazonaws.com/dataset/OGB-LSC/pcqm4m_kddcup2021.zip'super(MyPCQM4MDataset,self).__init__(root)filepath=osp.join(root,'raw/data.csv.gz')data_df=pd.read_csv(filepath)self.smiles_list=data_df['smiles']self.homolumogap_list=data_df['homolumogap']@propertydefraw_file_names(self):return'data.csv.gz'defdownload(self):path=download_url(self.url,self.root)extract_zip(path,self.root)os.unlink(path)shutil.move(osp.join(self.root,'pcqm4m_kddcup2021/raw/data.csv.gz'),osp.join(self.root,'raw/data.csv.gz'))deflen(self):returnlen(self.smiles_list)defget(self,idx):smiles,homolumogap=self.smiles_list[idx],self.homolumogap_list[idx]graph=smiles2graph(smiles)assert(len(graph['edge_feat'])==graph['edge_index'].shape[1])assert(len(graph['node_feat'])==graph['num_nodes'])x=torch.from_numpy(graph['node_feat']).to(torch.int64)edge_index=torch.from_numpy(graph['edge_index']).to(torch.int64)edge_attr=torch.from_numpy(graph['edge_feat']).to(torch.int64)y=torch.Tensor([homolumogap])num_nodes=int(graph['num_nodes'])data=Data(x,edge_index,edge_attr,y,num_nodes=num_nodes)returndatadefget_idx_split(self):split_dict=replace_numpy_with_torchtensor(torch.load(osp.join(self.root,'pcqm4m_kddcup2021/split_dict.pt')))returnsplit_dictCopy to clipboardErrorCopied
dataset=MyPCQM4MDataset('dataset')fromtorch_geometric.dataimportDataLoaderfromtqdmimporttqdmdataloader=DataLoader(dataset,batch_size=256,shuffle=True,num_workers=16)# for batch in tqdm(dataloader):# pass