Python 实现最简单的元胞自动机

简介

元胞自动机(cellular automata) 是离散而抽象的计算系统。元胞自动机在时间和空间上是离散的,最小单位是简单元胞(单元格)。每个元胞会产生有限数量的状态集,后续元胞由其邻域元胞的状态确定。这里所说的领域元胞,是指当前元胞的前一个元胞(记作元胞A)以及元胞A左右两个元胞。也就是说,邻域元胞总共包含三个元胞。给定初始层的状态,基于一定规则,我们可以不断更新下一层元胞的状态。通俗的讲,元胞自动机就是基于一定规则的“繁衍机器”。

最简单的例子

我们在控制台演示元胞自动机程序。
这里,我们选取的元胞状态只有两种,分别为 0 和 1。每一层由 64 个元胞组成,若元胞状态为 1,那么控制台将打印星号(*);如果元胞状态为 0,那么控制台将打印连字符(-)。也就是说,每一行由 64 个混合星号与连字符的图案组成。
那么,我们如何确定每一行的状态呢?

  • 首先,我们要对第一行进行初始化操作。我们设置第 31 个元胞的状态为 1、其余 63 个元胞的状态为 0.
  • 状态更新规则:若当前元胞的前一个元胞的状态为 1,或者前一个元胞的左右两边的元胞的状态有且只有一个值为 1, 那么该元胞的状态就为 1。反之,元胞的状态设为 0。对于第一列和最后一列,我们只需分别考虑右元胞和左元胞即可。对于中间部分的元胞来说,若其领域元胞的状态为[0,1,0]、[0,0,1]、[1,0,0]、[1,1,0]等状态时,当前元胞的状态就为 1。
    实现效果如下:


    Python高效编程
import time


def print_seq(seq, speed=0.5):
    for item in seq:
        if item:
            print('*', end='')
        else:
            print('-', end='')
    print('')
    time.sleep(speed)


class Cell:
    def __init__(self, deepth=31):
        self.ca = [0 if i != 31 else 1 for i in range(64)]
        self.ca_new = []
        self.deepth = deepth

    def process(self):
        print_seq(self.ca)
        for i in range(self.deepth):
            self._rule()
            print_seq(self.ca_new)
            self.ca = self.ca_new
            self.ca_new = []

    def _rule(self):
        for i in range(64):
            if 0 < i < 63:
                if self.ca[i - 1] == self.ca[i + 1]:
                    self.ca_new.append(0)
                else:
                    self.ca_new.append(1)
            elif i == 0:
                if self.ca[1]:
                    self.ca_new.append(1)
                else:
                    self.ca_new.append(0)
            else:
                if self.ca[62]:
                    self.ca_new.append(1)
                else:
                    self.ca_new.append(0)


def main():
    cell = Cell()
    cell.process()


if __name__ == '__main__':
    main()
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容

  • 元胞自动机(Cellular Automata, 简称CA)是一时间和空间都离散的动力系统。散布在规则格网(Lat...
    乘瓠散人阅读 13,021评论 0 5
  • 【定义】元胞自动机(Cellular Automata, CA)定义在一个具有离散、有限状态的元胞组成的元胞空间上...
    Xindolia_Ring阅读 4,514评论 0 4
  • 2013年数模,有一道题是关于道路故障占用车道的规划和预测分析,其中有一篇优秀论文用到了元胞自动机分析方法.元胞自...
    ZMYoo阅读 2,640评论 0 1
  • 黄昏稀过客,夜近等车难。 冬日飞淫雨,归人步快还。
    庄上人阅读 269评论 0 9
  • 昨天忙的不亦乐乎,竟然没有顾上看手机,今天才看到子霆爸爸发给我的信息,看完之后,心里暖暖的,油然涌上一股幸...
    窗帘飘飘阅读 377评论 0 0