原理:
朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法 。最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBM)。
和决策树模型相比,朴素贝叶斯分类器(Naive Bayes Classifier,或 NBC)发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。
朴素贝叶斯分类器是与线性模型非常相似的一种分类器,但它的训练速度往往更快。这种高效率所付出的代价是,朴素贝叶斯模型的泛化能力要比线性分类器(如LogisticRegression 和 LinearSVC)稍差。
朴素贝叶斯模型如此高效的原因在于,它通过单独查看每个特征来学习参数,并从每个特征中收集简单的类别统计数据。 scikit-learn 中实现了三种朴素贝叶斯分类器:GaussianNB、 BernoulliNB 和 MultinomialNB。 GaussianNB 可 应 用 于 任 意 连 续 数 据, 而BernoulliNB 假定输入数据为二分类数据, MultinomialNB 假定输入数据为计数数据(即每个特征代表某个对象的整数计数,比如一个单词在句子里出现的次数)。 BernoulliNB 和MultinomialNB 主要用于文本数据分类。
另外两种朴素贝叶斯模型(MultinomialNB 和 GaussianNB)计算的统计数据类型略有不同。MultinomialNB 计算每个类别中每个特征的平均值,而 GaussianNB 会保存每个类别中每个特征的平均值和标准差。
要想做出预测,需要将数据点与每个类别的统计数据进行比较,并将最匹配的类别作为预测结果。有趣的是, MultinomialNB 和 BernoulliNB 预测公式的形式都与线性模型完全相同。不幸的是,朴素贝叶斯模型 coef_ 的含义与线性模型稍有不同,因为 coef_不同于 w。
优点、 缺点和参数
MultinomialNB 和 BernoulliNB 都只有一个参数 alpha,用于控制模型复杂度。 alpha 的工作原理是,算法向数据中添加 alpha 这么多的虚拟数据点,这些点对所有特征都取正值。这可以将统计数据“平滑化”(smoothing)。 alpha 越大,平滑化越强,模型复杂度就越低。算法性能对 alpha 值的鲁棒性相对较好,也就是说, alpha 值对模型性能并不重要。但调整这个参数通常都会使精度略有提高。
GaussianNB 主要用于高维数据,而另外两种朴素贝叶斯模型则广泛用于稀疏计数数据,比如文本。 MultinomialNB 的性能通常要优于 BernoulliNB,特别是在包含很多非零特征的数据集(即大型文档)上。
朴素贝叶斯模型的许多优点和缺点都与线性模型相同。它的训练和预测速度都很快,训练过程也很容易理解。该模型对高维稀疏数据的效果很好,对参数的鲁棒性也相对较好。朴素贝叶斯模型是很好的基准模型,常用于非常大的数据集,在这些数据集上即使训练线性模型可能也要花费大量时间。