今天,我想明白为什么我开始刷Leetcode那么费劲了,原来我是按着题目顺序做的,今天开始,我决定先把简单的题刷完,再去挑战中等的题目
题目
给出一个 32 位的有符号整数,你需要将这个整数中每位上的数字进行反转。
假设我们的环境只能存储得下 32 位的有符号整数,则其数值范围为 [−231, 231 − 1]。请根据这个假设,如果反转后整数溢出那么就返回 0。
思路解析
我看到这个题目,第一想法就是字符串处理,先将数字转换成字符串,然后对字符串进行翻转,然后在转回数字。
注意事项
当然,作为一道leetcode的题,总是会要求你考虑到方方面面,我们可以考虑到这道题会有以下需要注意的地方:
1、负数翻转时,符号需要另外考虑
2、在尾部是零的情况,翻转后,需要将零去掉
3、输入数字没有超出给定范围,但是翻转后,可能就会导致溢出。
4、还有一个需要注意的地方,就是c++ 中的abs函数,下面我们先看一个例子:
#include <iostream>
#include <cmath>
int main(){
int a = -2147483648;
int b = std::abs(a);
std::cout<<a<<std::endl;
std::cout<<b<<std::endl;
}
你们猜结果是什么?
都是-2147483648,我们可以想一下是为什么?
char -128 ~ +127 (1 Byte)
short -32767 ~ + 32768 (2 Bytes)
unsigned short 0 ~ 65536 (2 Bytes)
int -2147483648 ~ +2147483647 (4 Bytes)
unsigned int 0 ~ 4294967295 (4 Bytes)
long == int
long long -9223372036854775808 ~ +9223372036854775807 (8 Bytes)
double 1.7 * 10^308 (8 Bytes)
这下我们就知道了,abs对负数取绝对值后,那个数就超出了整数的范围,显然他溢出了。
代码实现
class Solution {
public:
int reverse(int x){
int flag = 0;
if (x < 0){
flag = 0;
} else{
flag = 1;
}
long long tmp_x = std::fabs(x);
std::string tmp = std::to_string(tmp_x);
std::reverse(tmp.begin(),tmp.end());
if (flag) {
if (tmp.length() == 10 and tmp > "2147483647"){
return 0;
}
} else {
if (tmp.length() == 10 and tmp.substr(0,10) > "2147483648"){
return 0;
}
}
long long result = std::stoll(tmp);
if (flag) {
return result;
} else {
return -result;
}
}
};
反思
开始在做这道题时,并没有觉得难,很快就将大体框架写了出来,但是,当他一个个测试案例出来时,我开始一个个处理那些情况,真是补了西面漏了东面,于是我想到了上次的教训,于是,我把代码全删了,然后发现,其实这就是一个简单的分类讨论的思想,理清思路后,很快就写出了最终的答案。
一会儿,可能我会补上更快的答案...
敬请期待
去网上看了一下,我才发现,大部分提供的答案是,用模10取余的方法来得到最终结果的,但是时间竟然比我的长,我的是8ms,他们提供的是12ms,等晚上,我把他们的实现方法实现一下,贴上来。
#include "Solution.h"
#define MAX 2147483647
#define MIN -2147483647
int Solution::reverse_(int x) {
int flag = 0;
if (x < 0) {
flag = 0;
} else {
flag = 1;
}
long long AbsNum = std::abs(x);
if (AbsNum < MIN or AbsNum > MAX){
return 0;
}
int length = std::to_string(AbsNum).length();
int Div = AbsNum;
int Dived = 10;
int result = 0;
for (int i = 0; i < length; i++) {
result += (Div%Dived)*std::pow(10,length - i - 1);
Div = (int)Div/Dived;
}
if (not flag){
result = -result;
}
return result;
}
感觉这种方法在逻辑上更容易理解。