Spark 学习

本片简单的介绍如何使用Spark,我们将首先通过Spark的交互式shell(在Python或Scala中)介绍API。然后介绍如何使用Scale 和 python 编写应用程序。

首先从Spark网站下载Spark的打包版本

使用Spark shell 进行交互式分析

基本

Spark的shell提供了一种学习API的简单方法,以及一种以交互方式分析数据的强大工具。它可以在Scala(在Java VM上运行,因此是使用现有Java库的好方法)或Python中使用。通过在Spark目录中运行以下命令来启动它:

Scale

./bin/spark-shell

Spark的主要抽象是一个名为Dataset的分布式项目集合。可以从Hadoop InputFormats(例如HDFS文件)或通过转换其他数据集来创建数据集。让我们从Spark源目录中的README文件的文本中创建一个新的数据集:

scala> val textFile = spark.read.textFile("README.md")
textFile: org.apache.spark.sql.Dataset[String] = [value: string]

可以通过调用某些操作直接从Dataset获取值,或者转换数据集以获取新值。

scala> textFile.count() // Number of items in this Dataset
res0: Long = 126 // May be different from yours as README.md will change over time, similar to other outputs

scala> textFile.first() // First item in this Dataset
res1: String = # Apache Spark

现在让我们将这个数据集转换为新数据集。我们调用filter返回一个新的数据集,其中包含文件中的项目子集。

scala> val linesWithSpark = textFile.filter(line => line.contains("Spark"))
linesWithSpark: org.apache.spark.sql.Dataset[String] = [value: string]

我们可以将转换和行动联系在一起:

scala> textFile.filter(line => line.contains("Spark")).count() // How many lines contain "Spark"?
res3: Long = 15

数据集操作和转换可用于更复杂的计算。假设我们想要找到含有最多单词的行:

scala> textFile.map(line => line.split(" ").size).reduce((a, b) => if (a > b) a else b)
res4: Long = 15

这首先将一行映射为整数值,从而创建一个新的数据集。reduce在该数据集上调用以查找最大字数。参数map和reduceScala函数文字(闭包),并可以使用任何语言功能或Scala / Java库。例如,我们可以轻松调用其他地方声明的函数。我们将使用Math.max()函数使这段代码更容易理解:

scala> import java.lang.Math
import java.lang.Math

scala> textFile.map(line => line.split(" ").size).reduce((a, b) => Math.max(a, b))
res5: Int = 15

一种常见的数据流模式是MapReduce,由Hadoop推广。Spark可以轻松实现MapReduce流程:

scala> val wordCounts = textFile.flatMap(line => line.split(" ")).groupByKey(identity).count()
wordCounts: org.apache.spark.sql.Dataset[(String, Long)] = [value: string, count(1): bigint]

在这里,我们调用flatMap将行数据集转换为单词数据集,然后组合groupByKey并count计算文件中的单词计数作为(字符串,长整数)对的数据集。要在我们的shell中收集单词count,我们可以调用collect:

scala> wordCounts.collect()
res6: Array[(String, Int)] = Array((means,1), (under,2), (this,3), (Because,1), (Python,2), (agree,1), (cluster.,1), ...)

缓存

Spark还支持将数据集提取到群集范围的内存缓存中。这在重复访问数据时非常有用,例如查询小的“热”数据集或运行像PageRank这样的迭代算法时。举个简单的例子,让我们标记linesWithSpark要缓存的数据集:


scala> linesWithSpark.cache()
res7: linesWithSpark.type = [value: string]

scala> linesWithSpark.count()
res8: Long = 15

scala> linesWithSpark.count()
res9: Long = 15

用Spark来探索和缓存100行文本文件似乎很愚蠢。有趣的是,这些相同的功能可用于非常大的数据集,即使它们跨越数十个或数百个节点进行条带化。

自含的应用程序

假设我们希望使用Spark API编写一个自包含的应用程序。我们将在Scala
我们将在Scala中创建一个非常简单的Spark应用程序 - 事实上,它的名字很简单SimpleApp.scala:

/* SimpleApp.scala */
import org.apache.spark.sql.SparkSession

object SimpleApp {
  def main(args: Array[String]) {
    val logFile = "YOUR_SPARK_HOME/README.md" // Should be some file on your system
    val spark = SparkSession.builder.appName("Simple Application").getOrCreate()
    val logData = spark.read.textFile(logFile).cache()
    val numAs = logData.filter(line => line.contains("a")).count()
    val numBs = logData.filter(line => line.contains("b")).count()
    println(s"Lines with a: $numAs, Lines with b: $numBs")
    spark.stop()
  }
}

请注意,应用程序应定义main()方法而不是扩展scala.App。子类scala.App可能无法正常工作。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,509评论 6 504
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,806评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,875评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,441评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,488评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,365评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,190评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,062评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,500评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,706评论 3 335
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,834评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,559评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,167评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,779评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,912评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,958评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,779评论 2 354

推荐阅读更多精彩内容