bert生成句向量

BERT本质上是一个两段式的NLP模型。第一个阶段叫做:Pre-training,跟WordEmbedding类似,利用现有无标记的语料训练一个语言模型。第二个阶段叫做:Fine-tuning,利用预训练好的语言模型,完成具体的NLP下游任务。

Google已经投入了大规模的语料和昂贵的机器帮我们完成了Pre-training过程
bert中文模型链接:https://storage.googleapis.com/bert_models/2018_11_03/chinese_L-12_H-768_A-12.zip

这里分两步介绍bert的使用:第一怎么使用bert的词向量,第二如何fine-tuning做其他任务。

  • 如何使用bert的词向量

  • 如何用fine-tuning作文本分类

如何使用bert的词向量

传统的句向量采用词向量的方式求加权平均,无法解决一词多义对句子的影响,bert向量由于包含了上下文信息,从理论来看要比传统方法好。

方法一:直接生成词向量

1.下载bert项目
下载地址:https://github.com/google-research/bert

其中extract_features.py文件为bert句向量生成文件

image.png

2.下载中文预训练模型
下载地址:https://storage.googleapis.com/bert_models/2018_11_03/chinese_L-12_H-768_A-12.zip
3.直接进行句向量特征提取
传入参数

--input_file="./data/input.txt"
--output_file="./data/output.jsonl"
--vocab_file="./chinese_L-12_H-768_A-12/vocab.txt"
--bert_config_file="./chinese_L-12_H-768_A-12/bert_config.json"
--init_checkpoint="./chinese_L-12_H-768_A-12/bert_model.ckpt"
--layers=-2
--max_seq_length=128
--batch_size=8
layers: 是输出那些层的参数,-1就是最后一层,-2是倒数第二层,一次类推
max_seq_length: 是最大句子长度,根据自己的任务配置。如果你的GPU内存比较小,可以减小这个值,节省存储

输出结果如下:

{"linex_index": 1, "features": [{"token": "[CLS]", "layers": [{"index": -1, "values": [-0.2844, 0.450896, 0.285645, 0.421341, 0.411053, ...

方法二:bert-as-service两行代码加载词向量

详细介绍文章:https://zhuanlan.zhihu.com/p/50582974
github地址:https://github.com/hanxiao/bert-as-service
1.安装bert-as-service

pip install bert-serving-server  # server
pip install bert-serving-client  # client, independent of `bert-serving-server`

2.下载中文预训练模型,前面提到过
3.开启服务

bert-serving-start -model_dir D:/数据/实体链接/bert相识度匹配/chinese_L-12_H-768_A-12 -num_worker=1

4.直接加载词向量

from bert_serving.client import BertClient
bc = BertClient()
bc.encode(["今天天气真好","我感冒了"])

输出:

array([[ 0.43153867, -0.22524145,  0.02924719, ..., -0.12929817,
         0.3106631 , -0.1888775 ],
       [ 0.6095807 , -0.2103941 , -0.20782037, ..., -0.24075384,
        -0.25313932, -0.45011818]], dtype=float32)

方法三不用开启servers服务,简单生成句向量

地址:https://github.com/terrifyzhao/bert-utils

代码如下:

from bert.extrac_feature import BertVector
bv = BertVector()
bv.encode(['今天天气不错'])

输出:

[[ 1.21984698e-01  7.84057677e-02 -1.06496774e-01 -3.25891018e-01
   4.94978607e-01 -4.69692767e-01  2.54333645e-01 -8.82656407e-03...
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,921评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,635评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,393评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,836评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,833评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,685评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,043评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,694评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,671评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,670评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,779评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,424评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,027评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,984评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,214评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,108评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,517评论 2 343