吴恩达深度学习笔记(14)-Python中的广播(Broadcasting in Python)

Python 中的广播(Broadcasting in Python)

这个广播的入门讲解先从一个栗子开始:

这是一个不同食物(每100g)中不同营养成分的卡路里含量表格,表格为3行4列,列表示不同的食物种类,从左至右依次为苹果,牛肉,鸡蛋,土豆。行表示不同的营养成分,从上到下依次为碳水化合物,蛋白质,脂肪。


那么,我们现在想要计算不同食物中不同营养成分中的卡路里百分比。

现在计算苹果中的碳水化合物卡路里百分比含量,首先计算苹果(100g)中三种营养成分卡路里总和56+1.2+1.8 = 59,然后用56/59 = 94.9%算出结果。

可以看出苹果中的卡路里大部分来自于碳水化合物,而牛肉则不同。

对于其他食物,计算方法类似。首先,按列求和,计算每种食物中(100g)三种营养成分总和,然后分别用不用营养成分的卡路里数量除以总和,计算百分比。

那么,能否不使用for循环完成这样的一个计算过程呢?

假设上图的表格是一个4行3列的矩阵A,记为 A_(3×4),接下来我们要使用Python的numpy库完成这样的计算。我们打算使用两行代码完成,第一行代码对每一列进行求和,第二行代码分别计算每种食物每种营养成分的百分比。

在jupyter notebook中输入如下代码,按shift+Enter运行,输出如下。


下面使用如下代码计算每列的和,可以看到输出是每种食物(100g)的卡路里总和。


其中sum的参数axis=0表示求和运算按列执行,之后会详细解释。

接下来计算百分比,这条指令将 3×4的矩阵A除以一个1×4的矩阵,得到了一个 3×4的结果矩阵,这个结果矩阵就是我们要求的百分比含量。


下面再来解释一下A.sum(axis = 0)中的参数axis。axis用来指明将要进行的运算是沿着哪个轴执行,在numpy中,0轴是垂直的,也就是列,而1轴是水平的,也就是行。

而第二个A/cal.reshape(1,4)指令则调用了numpy中的广播机制。这里使用 3×4的矩阵A除以 1×4的矩阵cal。技术上来讲,其实并不需要再将矩阵cal reshape(重塑)成 1×4,因为矩阵cal本身已经是 1×4了。但是当我们写代码时不确定矩阵维度的时候,通常会对矩阵进行重塑来确保得到我们想要的列向量或行向量。重塑操作reshape是一个常量时间的操作,时间复杂度是O(1),它的调用代价极低。

那么一个 3×4 的矩阵是怎么和 1×4的矩阵做除法的呢?让我们来看一些更多的广播的例子。

在numpy中,当一个 4×1的列向量与一个常数做加法时,实际上会将常数扩展为一个 4×1的列向量,然后两者做逐元素加法。结果就是右边的这个向量。这种广播机制对于行向量和列向量均可以使用。

再看下一个例子。


用一个 2×3的矩阵和一个 1×3 的矩阵相加,其泛化形式是 m×n 的矩阵和 1×n的矩阵相加。在执行加法操作时,其实是将 1×n 的矩阵复制成为 m×n 的矩阵,然后两者做逐元素加法得到结果。针对这个具体例子,相当于在矩阵的第一列加100,第二列加200,第三列加300。这就是在前一张幻灯片中计算卡路里百分比的广播机制,只不过这里是除法操作(广播机制与执行的运算种类无关)。

下面是最后一个例子


这里相当于是一个 m×n 的矩阵加上一个 m×1 的矩阵。在进行运算时,会先将 m×1 矩阵水平复制 n 次,变成一个 m×n 的矩阵,然后再执行逐元素加法。

广播机制的一般原则如下:


这里先说一下对numpy广播机制的理解,再解释上面这张幻灯片。

首先是numpy广播机制

如果两个数组的后缘维度的轴长度相符或其中一方的轴长度为1,则认为它们是广播兼容的。广播会在缺失维度和轴长度为1的维度上进行。

后缘维度的轴长度:A.shape[-1] 即矩阵维度元组中的最后一个位置的值

对于笔记中卡路里计算的例子,矩阵 A_3,4 后缘维度的轴长度是4,而矩阵 cal_1,4 的后缘维度也是4,则他们满足后缘维度轴长度相符,可以进行广播广播会在轴长度为1的维度进行,轴长度为1的维度对应axis=0,即垂直方向,矩阵 cal_1,4 沿axis=0(垂直方向)复制成为 〖cal_temp〗_3,4 ,之后两者进行逐元素除法运算。

现在解释上图中的例子(重点概念,理清楚

矩阵 A_(m,n) 和矩阵 B_(1,n) 进行四则运算,后缘维度轴长度相符,可以广播,广播沿着轴长度为1的轴进行,即 B_(1,n) 广播成为 B_(m,n)' ,之后做逐元素四则运算。

矩阵 A_(m,n) 和矩阵 B_(m,1) 进行四则运算,后缘维度轴长度不相符,但其中一方轴长度为1,可以广播,广播沿着轴长度为1的轴进行,即 B_(m,1) 广播成为 B_(m,n)' ,之后做逐元素四则运算。

矩阵 A_(m,1) 和常数R 进行四则运算,后缘维度轴长度不相符,但其中一方轴长度为1,可以广播,广播沿着缺失维度和轴长度为1的轴进行,缺失维度就是axis=0,轴长度为1的轴是axis=1,即R广播成为 B_(m,1)' ,之后做逐元素四则运算。

总结一下broadcasting,可以看看下面的图:

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,651评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,468评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,931评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,218评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,234评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,198评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,084评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,926评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,341评论 1 311
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,563评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,731评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,430评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,036评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,676评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,829评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,743评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,629评论 2 354

推荐阅读更多精彩内容