xgboost调参相关

首先因为要使用xgboost进行pairwise的排序,所以objective应设为 rank:pairwise

*   `rank:pairwise`: Use LambdaMART to perform pairwise ranking where the pairwise loss is minimized

*   `rank:ndcg`: Use LambdaMART to perform list-wise ranking where [Normalized Discounted Cumulative Gain (NDCG)](http://en.wikipedia.org/wiki/NDCG) is maximized

import xgboost as xgb
from xgboost import DMatrix
from sklearn.datasets import load_svmlight_file
import numpy as np
from sklearn.metrics import ndcg_score

# data prepare
x_train, y_train = load_svmlight_file("libsvm_format.train.txt")
x_valid, y_valid = load_svmlight_file("libsvm_format.valid.txt")
x_test, y_test = load_svmlight_file("libsvm_format.test.txt")
group_list =[]

with open("group.test.txt", "r") as f:
    data = f.readlines()
    i = 0
    for line in data:
        i += int(line.split("\n")[0])
        group_list.append(i)

group_train = []
with open("group.train.txt", "r") as f:
    data = f.readlines()
    for line in data:
        group_train.append(int(line.split("\n")[0]))

group_valid = []
with open("group.valid.txt", "r") as f:
    data = f.readlines()
    for line in data:
        group_valid.append(int(line.split("\n")[0]))

group_test = []
with open("group.test.txt", "r") as f:
    data = f.readlines()
    for line in data:
        group_test.append(int(line.split("\n")[0]))

train_dmatrix = DMatrix(x_train, y_train)
valid_dmatrix = DMatrix(x_valid, y_valid)
test_dmatrix = DMatrix(x_test,y_test)

train_dmatrix.set_group(group_train)
valid_dmatrix.set_group(group_valid)
test_dmatrix.set_group(group_test)

params = {    'max_depth':4,
    'eta':0.3, 'silent':1,'min_child_weight':5,'gamma':0,'subsample':1,'reg_lambda':1,'alpha':0,
    'objective':'rank:pairwise',#lambdaMART的pairwise排序
    'eval_metric':'ndcg@4'}#ndcg@4-是标准的算法,不带减号则会把idcg为0时对应的dcg当成1

xgb_model = xgb.train(params, train_dmatrix, num_boost_round=1000 ,early_stopping_rounds=100,
                      evals=[(train_dmatrix,'train'),(valid_dmatrix, 'validation')])
pred = xgb_model.predict(test_dmatrix)

#cal metric
pred = np.split(pred,group_list)
y_test = np.split(y_test,group_list)
totallen = len(pred)
pred.pop()
y_test.pop()
ndcg4score = 0
count = 0
for pre,lab in zip(pred,y_test):
    if not any(pre): break
    if not any(lab): break
    a = []
    a.append(pre.tolist())
    b = []
    b.append(lab.tolist())
    #print(pre)
    #print(lab)
    #print(count)
    if len(pre)==1:curr = 1
    else : curr=ndcg_score(b,a,k=4)
    #count+=1
    ndcg4score+=curr

res = ndcg4score/len(pred)
print(res)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,919评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,567评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,316评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,294评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,318评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,245评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,120评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,964评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,376评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,592评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,764评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,460评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,070评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,697评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,846评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,819评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,665评论 2 354