矩阵分解(MF)和交替最小平方法(ALS)

矩阵分解是一种常用的推荐系统,通常研究者们只有用户-物品评分矩阵,如何从该矩阵中获得用户的个性偏好以及物品自身属性为交替最小二乘法的实现目标。转自:https://iii.run/archives/302.html

交替最小平方法(Alternating least squares, ALS)

本方法常用于基于矩阵分解的推荐系统中,如将用户-物品评分矩阵分解为两个低纬的矩阵,将每个用户和物品都表示为一个向量。

假设有m个用户和n个物品,设评分矩阵为R,矩阵分解的目标时候找到两个低维矩阵(X和Y)来逼近评分矩阵R:


image

对应的解释如下:


image

r_{ij}表示用户i对物品j的评分情况,为了能让X和Y的乘积尽量的接近R,这里使用到了最小损失函数。同时损失项一般需要加入正则项以避免过拟合问题,通常使用L2正则,因此目标函数为:

image

\lambda为正则化系数,防止过拟合用。
交替最小平方法(ALS)使用上述的平方误差,交替降低误差。何为交替降低误差呢,在每轮迭代中,只迭代其中一个参数,下回迭代另外一个参数,交替进行。

  • 固定Y,对Loss做X偏微分,使其偏微分等于0:


    image
  • 然后固定X,对Loss做Y偏微分,使其偏微分等于0:


    image
  • 循环上述过程,不断交替进行,直至误差收敛为止。

具体偏微分过程

image

其它

  • 损失函数的主体部分和正则部分,可以同一添加\frac12,因为求偏微分的时候右上角的2会掉下来。
  • 优化方法有两种,一种是令\frac{\partial L}{\partial x_u}=0,得到x_u的值。另外一种是:X_u \gets X_u -\gamma_x \frac{\partial L}{\partial X_u}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,417评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,921评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,850评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,945评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,069评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,188评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,239评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,994评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,409评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,735评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,898评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,578评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,205评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,916评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,156评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,722评论 2 363
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,781评论 2 351

推荐阅读更多精彩内容

  • {"keys":[{"key2":"余华","key":"活着","url":"https://www.jians...
    书籍数据记录阅读 500评论 0 0
  • 最近自己写的简书文章太多了,导致很难找到之前写的文章。 于是,我想整理一篇目录,使用搜索快捷键:ctrl+F,即可...
    张云钱阅读 1,620评论 0 1
  • 1. 我的双重世界 2018年以来,购买了很多的线上课程,并参与了其配套的线上社群。在线上社群里,遇见很多“牛人”...
    conniechow阅读 230评论 0 0
  • 历练是祝福。这句话我是在高四的时候看心理方面的书籍里阅读到的。后来它也成为我的毕业留言。人生真的很难讲,呀...
    吴珊53阅读 317评论 0 0