Multiple plots

  • read unrate.csv into DataFrame and assign to unrate

  • Use Pandas.to_datetime to convert the DATE column into a Series of datetime values.

  • Generate a line chart that visualizes the unemployment rates from 1948:

    • x-values should be the first 12 values in the DATE column
    • y-values should be the first 12 values in the VALUE column
  • Use pyplot.xticks() to rotate the x-axis tick labels by 90 degrees.

  • Use pyplot.xlabel() to set the x-axis label to "Month".

  • Use pyplot.ylabel() to set the y-axis label to "Unemployment Rate".

  • Use pyplot.title() to set the plot title to "Monthly Unemployment Trends, 1948".

  • Display the plot.

import pandas as pd
import matplotlib.pyplot as plt

unrate = pd.read_csv('unrate.csv')
unrate['DATE'] = pd.to_datetime(unrate['DATE'])
plt.plot(unrate['DATE'][:12],unrate['VALUE'][:12])
plt.xticks(rotation = 90)
plt.xlabel('Month')
plt.ylabel('Unemployment Rate')
plt.title('Monthly Unemployment Trends, 1948')

plt.show()
output_1_0.png
# axes_obj = fig.add_subplot(nrows, ncols, plot_number)
fig = plt.figure()
ax1 = fig.add_subplot(2,1,1)
ax2 = fig.add_subplot(2,1,2)
plt.show()
output_2_0.png

adding data

Create 2 line subplots in a 2 row by 1 column layout:

  • In the top subplot, plot the data from 1948.
    • For the x-axis, use the first 12 values in the DATE column.
    • For the y-axis, use the first 12 values in the VALUE column.
  • In the bottom subplot, plot the data from 1949.
    • For the x-axis, use the values from index 12 to 24 in the DATE column.
    • For the y-axis, use the values from index 12 to 24 in the VALUE column. Use plt.show() to display all the plots.
fig = plt.figure()
ax1 = fig.add_subplot(2,1,1)
ax2 = fig.add_subplot(2,1,2)
ax1.plot(unrate[0:12]['DATE'], unrate[0:12]['VALUE'])
ax2.plot(unrate[12:24]['DATE'], unrate[12:24]['VALUE'])

plt.show()
output_4_0.png

formatting and spacing

For the plot we generated in the last screen, set the width of the plotting area to 12 inches and the height to 9 inches.

#ig = plt.figure(figsize=(width, height))
fig = plt.figure(figsize = (12,9))
ax1 = fig.add_subplot(2,1,1)
ax2 = fig.add_subplot(2,1,2)

ax1.plot(unrate['DATE'][:12],unrate['VALUE'][:12])
ax2.plot(unrate['DATE'][12:24],unrate['VALUE'][12:24])

ax1.set_title('Monthly Unemployment Rate, 1948')
ax2.set_title('Monthly Unemployment Rate, 1949')

plt.show()
output_6_0.png

compraring across more years

  • Set the width of the plotting area to 12 inches and the height to 12 inches.
  • Generate a grid with 5 rows and 1 column and plot data from the individual years. Start with 1948 in the top subplot and end with 1952 in the bottom subplot.
  • Use plt.show() to display the plots.
fig = plt.figure(figsize= (12,12))

for i in range(5):
    ax = fig.add_subplot(5,1,i+1)

    #start_index
    s_i = i * 12  
    #end_index
    e_i = (i+1) * 12 

    subset = unrate[s_i:e_i]
    ax.plot(subset['DATE'], subset['VALUE'])

plt.show()
output_8_0.png

overlaying line charts

We can handle the visual overhead each additional plot adds by overlaying the line charts in a single subplot. If we remove the year from the x-axis and just keep the month values, we can use the same x-axis values to plot all of the lines. First, we'll explore how to extract just the month values from the DATEcolumn, then we'll dive into generating multiple plots on the same coordinate grid.

To extract the month values from the DATE column and assign them to a new column, we can use the pandas.Series.dt accessor:

  • unrate['MONTH'] = unrate['DATE'].dt.month
  • Calling pandas.Series.dt.month returns a Series containing the integer values for each month
  • Under the hood, pandas applies the datetime.date function over each datetime value in the DATE column, which returns the integer month value. we called pyplot.plot() to generate a single line chart.
unrate['MONTH'] = unrate['DATE'].dt.month
fig = plt.figure(figsize=(6,6))
plt.plot(unrate[0:12]['MONTH'], unrate[0:12]['VALUE'])
plt.plot(unrate[12:24]['MONTH'], unrate[12:24]['VALUE'])
plt.show()
output_10_0.png
unrate['MONTH'] = unrate['DATE'].dt.month
fig = plt.figure(figsize=(6,3))
plt.plot(unrate[12:24]['MONTH'], unrate[12:24]['VALUE'], c = 'blue')
plt.plot(unrate[0:12]['MONTH'], unrate[0:12]['VALUE'], c='red')
plt.show()
output_11_0.png

Adding More Lines

  • Set the plotting area to a width of 10 inches and a height of 6 inches.
  • Generate the following plots in the base subplot:
    • 1948: set the line color to "red"
    • 1949: set the line color to "blue"
    • 1950: set the line color to "green"
    • 1951: set the line color to "orange"
    • 1952: set the line color to "black"
  • Use plt.show() to display the plots
fig = plt.figure(figsize=(10,6))
colors = ['red','blue','green','orange','black']
for i in range(5):
    start_index = i*12
    end_index =(i+1)*12
    subset = unrate[start_index:end_index]
    plt.plot(subset['MONTH'],subset['VALUE'], c = colors[i])
plt.show()
output_13_0.png

adding a legend

When we generate each line chart, we need to specify the text label we want each color linked to. The pyplot.plot() function contains a label parameter, which we use to set the year value:

  • plt.plot(unrate[0:12]['MONTH'], unrate[0:12]['VALUE'], c='red', label='1948')

  • plt.plot(unrate[12:24]['MONTH'], unrate[12:24]['VALUE'], c='blue', label='1949')

  • Modify the code from the last screen that overlaid 5 plots to include a legend. Use the year value for each line chart as the label.

    • E.g. the plot of 1948 data that uses "red" for the line color should be labeled "1948" in the legend.
  • Place the legend in the "upper left" corner of the plot.

  • Display the plot using plt.show().

fig = plt.figure(figsize=(10,6))
colors = ['red', 'blue', 'green', 'orange', 'black']
for i in range(5):
    start_index = i*12
    end_index = (i+1)*12
    subset = unrate[start_index:end_index]
    lables = str(1948+i)
    plt.plot(subset['MONTH'], subset['VALUE'], 
             c=colors[i],label = lables)

plt.legend(loc ='upper left' )
plt.show()
output_15_0.png

final tweaks

Modify the code from the last screen:

  • Set the title to "Monthly Unemployment Trends, 1948-1952".
  • Set the x-axis label to "Month, Integer".
  • Set the y-axis label to "Unemployment Rate, Percent".
plt.show()
fig = plt.figure(figsize=(10,6))
colors = ['red', 'blue', 'green', 'orange', 'black']
for i in range(5):
    start_index = i*12
    end_index = (i+1)*12
    subset = unrate[start_index:end_index]
    label = str(1948 + i)
    plt.plot(subset['MONTH'], subset['VALUE'], c=colors[i], label=label)
plt.legend(loc='upper left')
plt.xlabel('Month, Integer')
plt.ylabel('Unemployment Rate, Percent')
plt.title('Monthly Unemployment Trends, 1948-1952')

plt.show()
output_17_0.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,133评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,682评论 3 390
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,784评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,508评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,603评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,607评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,604评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,359评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,805评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,121评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,280评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,959评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,588评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,206评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,193评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,144评论 2 352

推荐阅读更多精彩内容