1 ArrayList
1.1 简介
一种以数组实现的List,与数组相比,它具有动态扩展的能力,因此也可称之为动态数组。
1.2 源码分析
1.2.1 属性
/**
* 默认容量
*/
private static final int DEFAULT_CAPACITY = 10;
/**
* 空数组,如果传入的容量为0时使用
*/
private static final Object[] EMPTY_ELEMENTDATA = {};
/**
* 空数组,传传入容量时使用,添加第一个元素的时候会重新初始为默认容量大小
*/
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
/**
* 存储元素的数组
*/
transient Object[] elementData; // non-private to simplify nested class access
/**
* 集合中元素的个数
*
* @serial
*/
private int size;
(1)DEFAULT_CAPACITY
默认容量为10,也就是通过new ArrayList()创建时的默认容量。
(2)EMPTY_ELEMENTDATA
空的数组,这种是通过new ArrayList(0)创建时用的是这个空数组。
(3)DEFAULTCAPACITY_EMPTY_ELEMENTDATA
也是空数组,这种是通过new ArrayList()创建时用的是这个空数组,与EMPTY_ELEMENTDATA的区别是在添加第一个元素时使用这个空数组的会初始化为DEFAULT_CAPACITY(10)个元素。
(4)elementData
真正存放元素的地方,使用transient是为了不序列化这个字段。
private表示是类私有的属性,只要是在这个类内部都可以访问,嵌套类或者内部类也是在类的内部,所以也可以访问类的私有成员。
(5)size
真正存储元素的个数,而不是elementData数组的长度。
1.2.2 构造方法
ArrayList(int initialCapacity)构造方法:
传入初始容量,如果大于0就初始化elementData为对应大小,如果等于0就使用EMPTY_ELEMENTDATA空数组,如果小于0抛出异常。
public ArrayList(int initialCapacity) {
if (initialCapacity > 0) {
this.elementData = new Object[initialCapacity];
} else if (initialCapacity == 0) {
this.elementData = EMPTY_ELEMENTDATA;
} else {
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
}
}
ArrayList()构造方法:
不传初始容量,初始化为DEFAULTCAPACITY_EMPTY_ELEMENTDATA空数组,会在添加第一个元素的时候扩容为默认的大小,即10。
public ArrayList() {
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}
ArrayList(Collection c)构造方法:
传入集合并初始化elementData,这里会使用拷贝把传入集合的元素拷贝到elementData数组中,如果元素个数为0,则初始化为EMPTY_ELEMENTDATA空数组。
public ArrayList(Collection<? extends E> c) {
elementData = c.toArray();
if ((size = elementData.length) != 0) {
// c.toArray might (incorrectly) not return Object[] (see 6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, size, Object[].class);
} else {
// replace with empty array.
this.elementData = EMPTY_ELEMENTDATA;
}
}
1.2.3 add(E e)方法
添加元素到末尾,平均时间复杂度为O(1)
public boolean add(E e) {
// 检查是否需要扩容
ensureCapacityInternal(size + 1); // Increments modCount!!
// 将元素插入到最后一位
elementData[size++] = e;
return true;
}
private void ensureCapacityInternal(int minCapacity) {
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
}
ensureExplicitCapacity(minCapacity);
}
private void ensureExplicitCapacity(int minCapacity) {
modCount++;
// overflow-conscious code
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
// 新容量为旧容量的1.5倍
int newCapacity = oldCapacity + (oldCapacity >> 1);
// 如果新容量发现比需要的容量还小,则以需要的容量为准
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
// 如果新容量已经超过最大容量了,则使用最大容量
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// minCapacity is usually close to size, so this is a win:
// 以新容量拷贝出来一个新数组
elementData = Arrays.copyOf(elementData, newCapacity);
}
检查是否需要扩容;
如果elementData等于DEFAULTCAPACITY_EMPTY_ELEMENTDATA则初始化容量大小为DEFAULT_CAPACITY;
如果添加完后的元素数目大于当前的
elementData
的长度,进行扩容新容量是老容量的1.5倍(oldCapacity + (oldCapacity >> 1)),如果加了这么多容量发现比需要的容量还小,则以需要的容量为准;
创建新容量的数组并把老数组拷贝到新数组;
Arrays.copyOf
1.2.4 add(int index, E element)方法
添加元素到指定位置,平均时间复杂度为O(n)
public void add(int index, E element) {
// 检查是否越界
rangeCheckForAdd(index);
// 检查是否需要扩容
ensureCapacityInternal(size + 1); // Increments modCount!!
// 将index及其之后的元素往后挪一位,则index位置处就空出来了
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
// 将元素插入到index的位置
elementData[index] = element;
// 大小加1
size++;
}
1.2.5 addAll(Collection c)方法
public boolean addAll(Collection<? extends E> c) {
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityInternal(size + numNew); // Increments modCount
System.arraycopy(a, 0, elementData, size, numNew);
size += numNew;
return numNew != 0;
}
(1)拷贝c中的元素到数组a中;
(2)检查是否需要扩容;
(3)把数组a中的元素拷贝到elementData的尾部;
1.2.6 get(int index)方法
获取指定索引位置的元素,时间复杂度为O(1)。
public E get(int index) {
// 检查是否越界
rangeCheck(index);
// 返回数组index位置的元素
return elementData(index);
}
1.2.7 remove(int index)方法
删除指定索引位置的元素,时间复杂度为O(n)。
public E remove(int index) {
// 检查是否越界
rangeCheck(index);
modCount++;
// 获取index位置的元素
E oldValue = elementData(index);
// 如果index不是最后一位,则将index之后的元素往前挪一位
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
// 将最后一个元素删除,帮助GC
elementData[--size] = null; // clear to let GC do its work
// 返回旧值
return oldValue;
}
(1)检查索引是否越界;
(2)获取指定索引位置的元素;
(3)如果删除的不是最后一位,则其它元素往前移一位;
(4)将最后一位置为null,方便GC回收;
(5)返回删除的元素。
可以看到,ArrayList删除元素的时候并没有缩容
1.2.8 remove(Object o)方法
删除指定元素值的元素,时间复杂度为O(n)。
public boolean remove(Object o) {
if (o == null) {
// 遍历整个数组,找到元素第一次出现的位置,并将其快速删除
for (int index = 0; index < size; index++)
// 如果要删除的元素为null,则以null进行比较,使用==
if (elementData[index] == null) {
fastRemove(index);
return true;
}
} else {
// 遍历整个数组,找到元素第一次出现的位置,并将其快速删除
for (int index = 0; index < size; index++)
// 如果要删除的元素不为null,则进行比较,使用equals()方法
if (o.equals(elementData[index])) {
fastRemove(index);
return true;
}
}
return false;
}
private void fastRemove(int index) {
modCount++;
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // clear to let GC do its work
}
(1)找到第一个等于指定元素值的元素;
(2)快速删除;
fastRemove(int index)相对于remove(int index)少了检查索引越界的操作,可见jdk将性能优化到极致。
1.2.9 retainAll(Collection c)方法
求两个集合的交集。
(1)遍历elementData数组;
(2)如果元素在c中,则把这个元素添加到elementData数组的w位置并将w位置往后移一位;
(3)遍历完之后,w之前的元素都是两者共有的,w之后(包含)的元素不是两者共有的;
(4)将w之后(包含)的元素置为null,方便GC回收;
1.2.10 removeAll(Collection c)方法
求两个集合的单方向差集,只保留当前集合中不在c中的元素,不保留在c中不在当前集体中的元素。
1.3 总结
(1)ArrayList内部使用数组存储元素,当数组长度不够时进行扩容,每次加一半的空间,ArrayList不会进行缩容;
(2)ArrayList支持随机访问,通过索引访问元素极快,时间复杂度为O(1);
(3)ArrayList添加元素到尾部极快,平均时间复杂度为O(1);
(4)ArrayList添加元素到中间比较慢,因为要搬移元素,平均时间复杂度为O(n);
(5)ArrayList从尾部删除元素极快,时间复杂度为O(1);
(6)ArrayList从中间删除元素比较慢,因为要搬移元素,平均时间复杂度为O(n);
(7)ArrayList支持求并集,调用addAll(Collection c)方法即可;
(8)ArrayList支持求交集,调用retainAll(Collection c)方法即可;
(7)ArrayList支持求单向差集,调用removeAll(Collection c)方法即可;
1.4 较难的与ArrayList相关面试题
- ArrayList是怎么实现序列化和反序列化的?
ArrayList实际存储元素的底层数组elementData
设置成transient,那么ArrayList是怎么把元素序列化的呢?
依赖两个方法writeObject
和readObject
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException{
// Write out element count, and any hidden stuff
// 防止序列化期间有修改
int expectedModCount = modCount;
// 写出非transient非static属性(会写出size属性)
s.defaultWriteObject();
// Write out size as capacity for behavioural compatibility with clone()
// 写出元素个数
s.writeInt(size);
// Write out all elements in the proper order.
// 依次写出元素
for (int i=0; i<size; i++) {
s.writeObject(elementData[i]);
}
// 如果有修改,抛出异常
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
}
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
// 声明为空数组
elementData = EMPTY_ELEMENTDATA;
// Read in size, and any hidden stuff
// 读入非transient非static属性(会读取size属性)
s.defaultReadObject();
// Read in capacity
//读入元素个数,没什么用,只是因为写出的时候写了size属性,读的时候也要按顺序来读
s.readInt(); // ignored
if (size > 0) {
// be like clone(), allocate array based upon size not capacity
// 检查是否需要扩容
ensureCapacityInternal(size);
Object[] a = elementData;
// Read in all elements in the proper order.
// 依次读取元素到数组中
for (int i=0; i<size; i++) {
a[i] = s.readObject();
}
}
}
查看writeObject()方法可知,先调用s.defaultWriteObject()方法,再把size写入到流中,再把元素一个一个的写入到流中。
一般地,只要实现了Serializable接口即可自动序列化,writeObject()和readObject()是为了自己控制序列化的方式,这两个方法必须声明为private,在java.io.ObjectStreamClass#getPrivateMethod()方法中通过反射获取到writeObject()这个方法。
在ArrayList的writeObject()方法中先调用了s.defaultWriteObject()方法,这个方法是写入非static非transient的属性,在ArrayList中也就是size属性。同样地,在readObject()方法中先调用了s.defaultReadObject()方法解析出了size属性。
elementData定义为transient的优势,自己根据size序列化真实的元素,而不是根据数组的长度序列化元素,减少了空间占用
2 LinkedList
2.1 简介
一个以双向链表实现的List,它除了作为List使用,还可以作为队列或者栈来使用。
LinkedList不仅实现了List接口,还实现了Queue和Deque接口,所以它既能作为List使用,也能作为双端队列使用,当然也可以作为栈使用。
2.2 源码分析
2.2.1 属性
// 元素个数
transient int size = 0;
/**
*链表首节点
*/
transient Node<E> first;
/**
*链表尾节点
*/
transient Node<E> last;
主要内部类
private static class Node<E> {
E item;
Node<E> next;
Node<E> prev;
Node(Node<E> prev, E element, Node<E> next) {
this.item = element;
this.next = next;
this.prev = prev;
}
}
主要构造方法
public LinkedList() {
}
public LinkedList(Collection<? extends E> c) {
this();
addAll(c);
}
构造方法也很简单,可以看出是一个无界的队列。
2.2.2 添加元素
作为一个双端队列,添加元素主要有两种,一种是在队列尾部添加元素,一种是在队列首部添加元素,这两种形式在LinkedList中主要是通过下面两个方法来实现的。
private void linkFirst(E e) {
// 获取首节点
final Node<E> f = first;
// 创建新节点,3个参数:前一个节点,元素,后一个节点
final Node<E> newNode = new Node<>(null, e, f);
// 让新节点作为新的首节点
first = newNode;
// 判断是不是第一个添加的元素
// 如果是就把last也置为新节点
// 否则把原首节点的prev指针置为新节点
if (f == null)
last = newNode;
else
f.prev = newNode;
// 元素个数加1
size++;
// 修改次数加1,说明这是一个支持fail-fast的集合
modCount++;
}
void linkLast(E e) {
// 队列尾节点
final Node<E> l = last;
// 创建新节点,新节点的prev是尾节点
final Node<E> newNode = new Node<>(l, e, null);
// 让新节点成为新的尾节点
last = newNode;
// 判断是不是第一个添加的元素
// 如果是就把first也置为新节点
// 否则把原尾节点的next指针置为新节点
if (l == null)
first = newNode;
else
l.next = newNode;
// 元素个数加1
size++;
// 修改次数加1
modCount++;
}
public void addFirst(E e) {
linkFirst(e);
}
public void addLast(E e) {
linkLast(e);
}
public boolean offerFirst(E e) {
addFirst(e);
return true;
}
public boolean offerLast(E e) {
addLast(e);
return true;
}
上面是作为双端队列来看,它的添加元素分为首尾添加元素,那么,作为List呢?
作为List,是要支持在中间添加元素的,主要是通过下面这个方法实现的,add方法。
public void add(int index, E element) {
// 判断是否越界
checkPositionIndex(index);
// 如果index是在队列尾节点之后的一个位置
// 把新节点直接添加到尾节点之后
// 否则调用linkBefore()方法在中间添加节点
if (index == size)
linkLast(element);
else
linkBefore(element, node(index));
}
// 在节点succ之前添加元素
void linkBefore(E e, Node<E> succ) {
// assert succ != null;
// succ是待添加节点的后继节点
// 找到待添加节点的前置节点
final Node<E> pred = succ.prev;
// 在其前置节点和后继节点之间创建一个新节点
final Node<E> newNode = new Node<>(pred, e, succ);
// 修改后继节点的前置指针指向新节点
succ.prev = newNode;
// 判断前置节点是否为空
// 如果为空,说明是第一个添加的元素,修改first指针
// 否则修改前置节点的next为新节点
if (pred == null)
first = newNode;
else
pred.next = newNode;
// 修改元素个数
size++;
// 修改次数加1
modCount++;
}
Node<E> node(int index) {
// assert isElementIndex(index);
// 因为是双链表
// 所以根据index是在前半段还是后半段决定从前遍历还是从后遍历
// 这样index在后半段的时候可以少遍历一半的元素
if (index < (size >> 1)) {
// 如果是在前半段,就从前遍历
Node<E> x = first;
for (int i = 0; i < index; i++)
x = x.next;
return x;
} else {
// 如果是在后半段,就从后遍历
Node<E> x = last;
for (int i = size - 1; i > index; i--)
x = x.prev;
return x;
}
}
添加元素方式如图所示:
总结:
在队列首尾添加元素很高效,时间复杂度为O(1)。
在中间添加元素比较低效,首先要先找到插入位置的节点,再修改前后节点的指针,时间复杂度为O(n)。
2.2.3 删除元素
作为双端队列,删除元素也有两种方式,一种是队列首删除元素,一种是队列尾删除元素。
removeFirst()
,removeLast()
:没有元素抛出异常;
pollFirst()
,pollLast()
:没有元素返回null;
作为List,又要支持中间删除元素,
remove(int index)
:删除中间节点
源码就不赘述了。
总结:
在队列首尾删除元素很高效,时间复杂度为O(1)。
在中间删除元素比较低效,首先要找到删除位置的节点,再修改前后指针,时间复杂度为O(n)。
2.2.4 栈
LinkedList是双端队列,还记得双端队列可以作为栈使用吗?
public void push(E e) {
addFirst(e);
}
public E pop() {
return removeFirst();
}
栈的特性是LIFO(Last In First Out),所以作为栈使用也很简单,添加删除元素都只操作队列首节点即可。
2.3 总结
(1)LinkedList是一个以双链表实现的List;
(2)LinkedList还是一个双端队列,具有队列、双端队列、栈的特性;
(3)LinkedList在队列首尾添加、删除元素非常高效,时间复杂度为O(1);
(4)LinkedList在中间添加、删除元素比较低效,时间复杂度为O(n);
(5)LinkedList不支持随机访问,所以访问非队列首尾的元素比较低效;
(6)LinkedList在功能上等于ArrayList + ArrayDeque;
3 面试
- ArrayList和LinkedList的区别?
(1)ArrayList和LinkedList可想从名字分析,它们一个是Array(动态数组)的数据结构,一个是Link(链表)的数据结构,此外,它们两个都是对List接口的实现。
前者是数组队列,相当于动态数组;后者为双向链表结构,也可当作堆栈、队列、双端队列
(2)当随机访问List时(get和set操作),ArrayList比LinkedList的效率更高,因为LinkedList是线性的数据存储方式,所以需要移动指针从前往后依次查找。
(3)当对数据进行增加和删除的操作时(add和remove操作),LinkedList比ArrayList的效率更高,因为ArrayList是数组,所以在其中进行增删操作时,会对操作点之后所有数据的下标索引造成影响,需要进行数据的移动。
(4)从利用效率来看,ArrayList自由性较低,因为它需要手动的设置固定大小的容量,但是它的使用比较方便,只需要创建,然后添加数据,通过调用下标进行使用;而LinkedList自由性较高,能够动态的随数据量的变化而变化,但是它不便于使用。