SPSS二元回归分析方法

二元变量是数据统计中常用的一种变量,这种变量只有两个可能:是和否,对于这种变量来说,一般是很难进行直接的线性或非线性回归分析的。这时要探究变量之间的关系,就需要用到二元回归分析。

接下来我们就通过一个简单的示例来介绍一下IBM SPSS Statistics中如何对二元变量进行回归分析。

一、概述

1.样本数据

图1:样本数据

这是一份肿瘤患者体内肿瘤情况的统计表,通过二元回归分析,我们可以拟合年龄、肿瘤大小和扩散等级这三个变量与“癌变部位的淋巴结是否含有癌细胞”的回归关系。

2.二元logistic回归

图2:功能位置

在“分析”菜单下,可以打开“回归”中的“二元logistic回归”分析,这是SPSS提供的专门用于二元回归的一种分析方法。

二、操作指南

1.变量设置

图3:变量设置

将“癌变部位的淋巴结是否含有癌细胞”作为因变量,将剩余三个变量移入“协变量”窗口。

下面的方法设置的是协变量的输入方式,默认的“输入”就是将变量全部输入,其他的方法是根据一些特定的方法向前或向后剔除变量后再输入,我们这里使用“输入”即可。

选择变量是用来设置筛选变量的,本数据样本中变量较少,所以不使用这个功能。

2.分类设置

图4:分类设置

分类窗口设置分类协变量,我们这里的分类变量是“肿瘤扩散等级”,选择“指示灯”对比方法,“最后一个”参考类别。

3.保存设置

图5:保存设置

这是IBM SPSS Statistics分析中较为常见的一个分析保存对话框,用户可以在其中设置要保存的预测值、影响和残差,在需要保存的项目前勾选复选框即可。

勾选概率、组成员、杠杆值、标准化和协方差矩阵。

4.选项设置

图6:选项设置

这个对话框设置统计图和步进概率,勾选分类图、霍斯默-莱梅肖拟合优度,在每个步骤输出。

步进概率中设置进入概率和删除概率,前者数值应小于后者,保持系统默认即可。

5.完成分析

图7:分析结果

在输出日志中查看最终的分析结果,SPSS会为用户提供模型的相关参数,包括个案统计、显著性参数、模型拟合度参数等,本例中的显著性系数均较小,拟合参数较大,因此对于这三个自变量来说,因变量与它们的拟合效果并不明显。

三、小结

以上就是我们要介绍的如何使用SPSS二元回归分析方法对二元变量进行拟合分析的案例分享了,希望可以对大家有所帮助!

更多软件资讯和案例分享欢迎进入IBM SPSS Statistics中文网站查看。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,287评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,346评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,277评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,132评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,147评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,106评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,019评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,862评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,301评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,521评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,682评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,405评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,996评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,651评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,803评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,674评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,563评论 2 352

推荐阅读更多精彩内容