weak关键字
weak是我们开发过程中很常见的关键字,使用场景如下:
- 声明弱引用属性
- 使用__weak来创建一个弱引用指针
weak的主要作用就是用于内存管理,一个weak类型指针指向的对象被释放后,系统会自动将指针置为nil,防止其他代码访问造成野指针异常。接下来我们跟随源码来探索下系统是如何实现这种机制的。
代码
int main(int argc, const char * argv[]) {
@autoreleasepool {
DemoObject *object1 = [DemoObject new];
DemoObject *object2 = [DemoObject new];
__weak id wObject = object1;
wObject = object2;
}
return 0;
}
主要调用流程以及对应关系如下:
1.objc_initWeak---> __weak id wObject = object1
2.objc_storeWeak ---> wObject = object2
3.objc_destroyWeak ---> 出了作用域之后wObject指针需要被回收
4.objc_storeStrong ---> 出了作用域之后object1、object2指针需要被回收,调用了2次
源码追踪
接下来我们跟随libobjc的源码来探索weak的内部实现。 不过在此之前,我们需要来了解几个结构,以便于更好的阅读源码
相关的几个结构
StripedMap
// RefcountMap disguises its pointers because we
// don't want the table to act as a root for `leaks`.
typedef objc::DenseMap<DisguisedPtr<objc_object>,size_t,RefcountMapValuePurgeable> RefcountMap;
// StripedMap<T> is a map of void* -> T, sized appropriately
// for cache-friendly lock striping.
// For example, this may be used as StripedMap<spinlock_t>
// or as StripedMap<SomeStruct> where SomeStruct stores a spin lock.
template<typename T>
class StripedMap {
#if TARGET_OS_IPHONE && !TARGET_OS_SIMULATOR
enum { StripeCount = 8 };
#else
enum { StripeCount = 64 };
#endif
...
struct PaddedT {
T value alignas(CacheLineSize);
};
PaddedT array[StripeCount];
// 哈希函数
static unsigned int indexForPointer(const void *p) {
uintptr_t addr = reinterpret_cast<uintptr_t>(p);
return ((addr >> 4) ^ (addr >> 9)) % StripeCount;
}
// 运算符重载取值
T& operator[] (const void *p) {
return array[indexForPointer(p)].value;
}
...
}
StripedMap是一个哈希表,包含了一个在ios下容量为8的数组,数组每一个元素是结构体PaddedT,内部包含了一个T类型的value变量。在本例中可以简单的理解为一个存储SideTable的哈希表,容量为8。
SideTable
// RefcountMap disguises its pointers because we
// don't want the table to act as a root for `leaks`.
typedef objc::DenseMap<DisguisedPtr<objc_object>,size_t,RefcountMapValuePurgeable> RefcountMap;
// Template parameters.
enum HaveOld { DontHaveOld = false, DoHaveOld = true };
enum HaveNew { DontHaveNew = false, DoHaveNew = true };
struct SideTable {
spinlock_t slock; // 锁
RefcountMap refcnts; // 引用计数表
weak_table_t weak_table; // 弱引用表
SideTable() {
memset(&weak_table, 0, sizeof(weak_table));
}
~SideTable() {
_objc_fatal("Do not delete SideTable.");
}
void lock() { slock.lock(); }
void unlock() { slock.unlock(); }
void forceReset() { slock.forceReset(); }
...
};
SideTable有三个变量:
- 互斥锁 slock
- 引用计数表 refcnts
- 弱引用表 weak_table
weak_table_t
/**
* The global weak references table. Stores object ids as keys,
* and weak_entry_t structs as their values.
*/
struct weak_table_t {
weak_entry_t *weak_entries; // entry数组
size_t num_entries; // 当前的entry个数
uintptr_t mask; // 容量-1
uintptr_t max_hash_displacement;
};
weak_entry_t
typedef DisguisedPtr<objc_object *> weak_referrer_t; // 可以理解为是一个对象指针,进行伪装的目的是为了避免被内存检测工具误认为出现内存泄漏
#if __LP64__
#define PTR_MINUS_2 62 // 共用体变量num_refs的位数
#else
#define PTR_MINUS_2 30
#endif
#define WEAK_INLINE_COUNT 4 // inline_referrers数组的容量
#define REFERRERS_OUT_OF_LINE 2 // 标识是用数组还是referrers存储弱引用指针
struct weak_entry_t {
DisguisedPtr<objc_object> referent; // 弱引用对象obj
union { // 共用体
struct {
weak_referrer_t *referrers; // 指针
uintptr_t out_of_line_ness : 2;
uintptr_t num_refs : PTR_MINUS_2;
uintptr_t mask;
uintptr_t max_hash_displacement;
};
struct {
// out_of_line_ness field is low bits of inline_referrers[1]
weak_referrer_t inline_referrers[WEAK_INLINE_COUNT]; // 数组
};
};
bool out_of_line() {
return (out_of_line_ness == REFERRERS_OUT_OF_LINE);
}
weak_entry_t& operator=(const weak_entry_t& other) {
memcpy(this, &other, sizeof(other));
return *this;
}
// entry的初始化方法,默认利用inline_referrers数组存储指针地址
weak_entry_t(objc_object *newReferent, objc_object **newReferrer)
: referent(newReferent)
{
inline_referrers[0] = newReferrer;
for (int i = 1; i < WEAK_INLINE_COUNT; i++) {
inline_referrers[i] = nil;
}
}
};
这几个结构之间的关联关系如下:
大致了解了上面几个结构体之后,我们可以继续下面的步骤,在上面图中断点中直接点击Step into会直接进入objc_initWeak函数。
objc_initWeak
// Initialize a fresh weak pointer to some object location.
id
objc_initWeak(id *location, id newObj)
{
if (!newObj) {
*location = nil;
return nil;
}
return storeWeak<DontHaveOld, DoHaveNew, DoCrashIfDeallocating>
(location, (objc_object*)newObj);
}
对应的是__weak id wObject = object1
注意此时storeWeak的模板参数为:
- DontHaveOld 没有旧值
- DoHaveNew 有新值
storeWeak先略过,我们先看objc_storeWeak函数
objc_storeWeak
// This function stores a new value into a __weak variable. It would
* be used anywhere a __weak variable is the target of an assignment.
id
objc_storeWeak(id *location, id newObj)
{
return storeWeak<DoHaveOld, DoHaveNew, DoCrashIfDeallocating>
(location, (objc_object *)newObj);
}
对应的是wObject = object2;
注意此时storeWeak的模板参数为:
- DoHaveOld 有旧值
- DoHaveNew 有新值
从上述代码可以看出init/store方法一个是在初始化时调用,一个是重新赋值时调用,最终都调用了storeWeak函数。很显然,storeWeak函数是我们研究的重点。
storeWeak
// Update a weak variable.
// If HaveOld is true, the variable has an existing value
// that needs to be cleaned up. This value might be nil.
// If HaveNew is true, there is a new value that needs to be
// assigned into the variable. This value might be nil.
// If CrashIfDeallocating is true, the process is halted if newObj is
// deallocating or newObj's class does not support weak references.
// If CrashIfDeallocating is false, nil is stored instead.
enum CrashIfDeallocating {
DontCrashIfDeallocating = false, DoCrashIfDeallocating = true
};
template <HaveOld haveOld, HaveNew haveNew,
CrashIfDeallocating crashIfDeallocating>
static id
storeWeak(id *location, objc_object *newObj)
{
ASSERT(haveOld || haveNew);
if (!haveNew) ASSERT(newObj == nil);
// 声明需要的变量
Class previouslyInitializedClass = nil;
id oldObj; // weak指针指向的旧值
SideTable *oldTable; // 旧值对应的sidetable
SideTable *newTable; // 新值对应的sidetable
// Acquire locks for old and new values.
// Order by lock address to prevent lock ordering problems.
// Retry if the old value changes underneath us.
retry:
if (haveOld) {
oldObj = *location; // 得到旧值和sidetable
oldTable = &SideTables()[oldObj];
} else {
oldTable = nil;
}
if (haveNew) {
newTable = &SideTables()[newObj]; // 得到新值对应的sidetable
} else {
newTable = nil;
}
// 加锁操作,避免出现多线程安全问题
SideTable::lockTwo<haveOld, haveNew>(oldTable, newTable);
// 有旧值但是和此时的弱引用指针指向不一致,说明出现了异常,需要重新尝试
if (haveOld && *location != oldObj) {
SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
goto retry;
}
// Prevent a deadlock between the weak reference machinery
// and the +initialize machinery by ensuring that no
// weakly-referenced object has an un-+initialized isa.
// 此处的逻辑是为了防止在initialize方法中出现相关弱引用的逻辑,此时initialize还没有执行完会出现递归调用,通过previouslyInitializedClass来打破递归
if (haveNew && newObj) {
Class cls = newObj->getIsa();
if (cls != previouslyInitializedClass &&
!((objc_class *)cls)->isInitialized())
{
SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
class_initialize(cls, (id)newObj);
// If this class is finished with +initialize then we're good.
// If this class is still running +initialize on this thread
// (i.e. +initialize called storeWeak on an instance of itself)
// then we may proceed but it will appear initializing and
// not yet initialized to the check above.
// Instead set previouslyInitializedClass to recognize it on retry.
previouslyInitializedClass = cls;
goto retry;
}
}
// Clean up old value, if any.
if (haveOld) {
// 清理弱引指针在旧值所对应的weak_table中的信息
weak_unregister_no_lock(&oldTable->weak_table, oldObj, location);
}
// Assign new value, if any.
if (haveNew) {
// 在新值所对应的weak_table中的注册当前弱引用指针的信息
newObj = (objc_object *)
weak_register_no_lock(&newTable->weak_table, (id)newObj, location,
crashIfDeallocating);
// weak_register_no_lock returns nil if weak store should be rejected
// Set is-weakly-referenced bit in refcount table.
if (newObj && !newObj->isTaggedPointer()) {
// 更新object的isa中的相关标识,标记存在弱引用
newObj->setWeaklyReferenced_nolock();
}
// Do not set *location anywhere else. That would introduce a race.
*location = (id)newObj;
}
else {
// No new value. The storage is not changed.
}
SideTable::unlockTwo<haveOld, haveNew>(oldTable, newTable);
return (id)newObj;
}
storeWeak代码比较多,大致分为一下三步:
1.从哈希表中获取新值和旧值对应的sidetable
2.weak_unregister_no_lock清理旧值在sidetable中对应的信息
3.weak_register_no_lock在新值对应的sidetable中注册对应的信息,同时更新新值的isa。
weak_unregister_no_lock 解除注册weak指针
void
weak_unregister_no_lock(weak_table_t *weak_table, id referent_id,
id *referrer_id)
{
// 对应object
objc_object *referent = (objc_object *)referent_id;
// 指向weak指针的指针
objc_object **referrer = (objc_object **)referrer_id;
weak_entry_t *entry;
if (!referent) return;
// 在weak_table中寻找object对应的entry
if ((entry = weak_entry_for_referent(weak_table, referent))) {
// 移除对应的entry里面的指针,只是解除了weak指针和当前object的关系,后面weak指针有可能会指向其他的对象。
remove_referrer(entry, referrer);
bool empty = true;
// 判断entry是否为空,entry有两种存储方式,因此需要区分对待
if (entry->out_of_line() && entry->num_refs != 0) {
empty = false;
}
else {
for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
if (entry->inline_referrers[i]) {
empty = false;
break;
}
}
}
// entry为空时需要从weak_table中移除entry
if (empty) {
weak_entry_remove(weak_table, entry);
}
}
// Do not set *referrer = nil. objc_storeWeak() requires that the
// value not change.
}
梳理之后,上面的解除流程如下:
1.在weak_table中寻找referent_id(object对象)对应的entry
2.从entry中移除referrer(指向weak的指针)
3.entry为空时将entry从weak_table移除
weak_register_no_lock 注册weak指针
id
weak_register_no_lock(weak_table_t *weak_table, id referent_id,
id *referrer_id, bool crashIfDeallocating)
{
// object
objc_object *referent = (objc_object *)referent_id;
// weak指针的地址
objc_object **referrer = (objc_object **)referrer_id;
if (!referent || referent->isTaggedPointer()) return referent_id;
// ensure that the referenced object is viable
bool deallocating;
if (!referent->ISA()->hasCustomRR()) {
deallocating = referent->rootIsDeallocating();
}
else {
BOOL (*allowsWeakReference)(objc_object *, SEL) =
(BOOL(*)(objc_object *, SEL))
object_getMethodImplementation((id)referent,
@selector(allowsWeakReference));
if ((IMP)allowsWeakReference == _objc_msgForward) {
return nil;
}
deallocating =
! (*allowsWeakReference)(referent, @selector(allowsWeakReference));
}
if (deallocating) {
if (crashIfDeallocating) {
_objc_fatal("Cannot form weak reference to instance (%p) of "
"class %s. It is possible that this object was "
"over-released, or is in the process of deallocation.",
(void*)referent, object_getClassName((id)referent));
} else {
return nil;
}
}
// now remember it and where it is being stored
weak_entry_t *entry; /**找到obj对应的weak_entry_t*/
if ((entry = weak_entry_for_referent(weak_table, referent))) {
// 将地址插入到entry的数组中,其中会涉及到entry内部结构的变化
append_referrer(entry, referrer);
}
else {
// 没有找到entry,需要新建一个entry
weak_entry_t new_entry(referent, referrer); /** (对象, 指针)
// 加入之后weak_table可能发生容量的变化
weak_grow_maybe(weak_table);
// entry插入到weak_table中
weak_entry_insert(weak_table, &new_entry);
}
// Do not set *referrer. objc_storeWeak() requires that the
// value not change.
return referent_id;
}
和解除注册类似,需要通过object找到对应的entry之后,将弱引用指针地址存储对应的entry中,如果没有找到entry还需要创建新的entry并插入到weak_table中。
objc_destroyWeak
在上面的代码中,当作用域结束时,需要解除weak指针和指向对象的关联关系,这个地方调用的就是objc_destoryWeak方法。
void
objc_destroyWeak(id *location)
{
(void)storeWeak<DoHaveOld, DontHaveNew, DontCrashIfDeallocating>
(location, nil);
}
本质也是调用了storeWeak函数,只不过传入的参数为DoHaveOld, DontHaveNew,因此执行了解除注册的操作。
weak指针自动置nil的原理
因为weak并不会增加object的引用计数,因此在weak指针指向的情况下,object也会被释放,当weak指针指向的object被释放之后,系统会自动将weak指针指向nil,防止出现野指针异常,我们从dealloc方法着手,来看一下原理。
release
在dealloc打下断点,查看调用堆栈,可以发现当我们的object1出了作用域后,系统会调用objc_storeStrong(id *location, id obj)的方法
其中的location记录了object1指针的地址,obj的值为nil,而prev为全局变量globalObject的地址。在这种情境下,objc_storeStrong主要就是触发了objc_release即object1的release操作。
仅在当前情况,后续的操作路程如下:
1.通过object1的isa_t,对其中的extra_rc也就是引用计数进行减操作
2.extra_rc溢出的时候会判断isa_t中的has_sidetable_rc的标识,发现没有使用sidetable来存储额外的引用计数
3.此时进入object1的dealloc流程,通过消息发送执行dealloc流程
dealloc
dealloc函数的反汇编实现如下图:
可以发现在 dealloc的最后调用了super的实现。
- (void)dealloc {
_objc_rootDealloc(self);
}
void
_objc_rootDealloc(id obj)
{
ASSERT(obj);
obj->rootDealloc();
}
inline void
objc_object::rootDealloc()
{
if (isTaggedPointer()) return; // fixme necessary?
if (fastpath(isa.nonpointer &&
!isa.weakly_referenced &&
!isa.has_assoc &&
!isa.has_cxx_dtor &&
!isa.has_sidetable_rc))
{
assert(!sidetable_present());
free(this);
}
else {
object_dispose((id)this);
}
}
可以看到在rootDealloc方法中进行了一次判断:
- 不是nonpointer
- weakly_referenced:弱引用
- has_assoc:关联对象
- has_cxx_dtor: cxx析构函数
- has_sidetable_rc: 使用sidetable存储了额外的引用计数
如果上述五个条件有任何一个命中,系统会执行object_dispose函数,否则会直接释放当前对象的内存空间。这五个条件中,其中有一个就是弱引用的标识weakly_referenced。
id
object_dispose(id obj)
{
if (!obj) return nil;
objc_destructInstance(obj);
free(obj);
return nil;
}
void *objc_destructInstance(id obj)
{
if (obj) {
// Read all of the flags at once for performance.
bool cxx = obj->hasCxxDtor();
bool assoc = obj->hasAssociatedObjects();
// This order is important.
if (cxx) object_cxxDestruct(obj); // 对自己的属性进行release操作
if (assoc) _object_remove_assocations(obj); // 移除关联对象
obj->clearDeallocating();
}
return obj;
}
inline void
objc_object::clearDeallocating()
{
if (slowpath(!isa.nonpointer)) {
// Slow path for raw pointer isa.
sidetable_clearDeallocating();
}
else if (slowpath(isa.weakly_referenced || isa.has_sidetable_rc)) {
// Slow path for non-pointer isa with weak refs and/or side table data.
// 处理有弱引用或者使用sidetable存储引用计数的non-pointer isa
clearDeallocating_slow();
}
assert(!sidetable_present());
}
NEVER_INLINE void
objc_object::clearDeallocating_slow()
{
ASSERT(isa.nonpointer && (isa.weakly_referenced || isa.has_sidetable_rc));
SideTable& table = SideTables()[this];
table.lock();
if (isa.weakly_referenced) {
// 清理弱引用表
weak_clear_no_lock(&table.weak_table, (id)this);
}
if (isa.has_sidetable_rc) {
// 抹去引用计数表中关于当前对象的引用计数
table.refcnts.erase(this);
}
table.unlock();
}
weak_clear_no_lock
终于来到了weak指针相关的部分
void
weak_clear_no_lock(weak_table_t *weak_table, id referent_id)
{
objc_object *referent = (objc_object *)referent_id;
// 找到对应的entry
weak_entry_t *entry = weak_entry_for_referent(weak_table, referent);
if (entry == nil) {
/// XXX shouldn't happen, but does with mismatched CF/objc
//printf("XXX no entry for clear deallocating %p\n", referent);
return;
}
// zero out references
weak_referrer_t *referrers;
size_t count;
if (entry->out_of_line()) {
// 如果是以非inline的方式,count = mask+1
referrers = entry->referrers;
count = TABLE_SIZE(entry);
}
else {
// inline的方式count = 4
referrers = entry->inline_referrers;
count = WEAK_INLINE_COUNT;
}
for (size_t i = 0; i < count; ++i) {
objc_object **referrer = referrers[i];
if (referrer) {
// 核心代码:弱引用指针置nil
if (*referrer == referent) {
*referrer = nil;
}
else if (*referrer) {
_objc_inform("__weak variable at %p holds %p instead of %p. "
"This is probably incorrect use of "
"objc_storeWeak() and objc_loadWeak(). "
"Break on objc_weak_error to debug.\n",
referrer, (void*)*referrer, (void*)referent);
objc_weak_error();
}
}
}
// 移除weak_table中对应的entry
weak_entry_remove(weak_table, entry);
}
以上就是weak指针在指向的对象释放时自动置nil的原理。
关于weak_entry_t和weak_table的一些操作的具体实现
weak_entry_for_referent
在weak_table中查找object对应的entry
static weak_entry_t *
weak_entry_for_referent(weak_table_t *weak_table, objc_object *referent)
{
ASSERT(referent);
weak_entry_t *weak_entries = weak_table->weak_entries;
if (!weak_entries) return nil;
// 通过哈希函数得到object在weak_entries中的位置
size_t begin = hash_pointer(referent) & weak_table->mask;
size_t index = begin;
size_t hash_displacement = 0;
// 从得到的位置开始遍历哈希表,查找对应的entry
while (weak_table->weak_entries[index].referent != referent) {
index = (index+1) & weak_table->mask;
if (index == begin) bad_weak_table(weak_table->weak_entries);
hash_displacement++;
if (hash_displacement > weak_table->max_hash_displacement) {
return nil;
}
}
return &weak_table->weak_entries[index];
}
append_referrer
将指针地址放入对应的entry中
static void append_referrer(weak_entry_t *entry, objc_object **new_referrer)
{
if (! entry->out_of_line()) {
// Try to insert inline.
// inline的情况下遍历inline数组,如果有空位置就插入
for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
if (entry->inline_referrers[i] == nil) {
entry->inline_referrers[i] = new_referrer;
return;
}
}
// inline已经满了,需要开辟新的空间
// Couldn't insert inline. Allocate out of line.
weak_referrer_t *new_referrers = (weak_referrer_t *)
calloc(WEAK_INLINE_COUNT, sizeof(weak_referrer_t));
// This constructed table is invalid, but grow_refs_and_insert
// will fix it and rehash it.
// 将inline的数组转移到重新开辟的new_referrers中, 这一次的操作是无效的,因为后面会对new_referrers进行扩容。。。
for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
new_referrers[i] = entry->inline_referrers[i];
}
entry->referrers = new_referrers;
entry->num_refs = WEAK_INLINE_COUNT;
entry->out_of_line_ness = REFERRERS_OUT_OF_LINE;
entry->mask = WEAK_INLINE_COUNT-1;
entry->max_hash_displacement = 0;
}
ASSERT(entry->out_of_line());
// 存储的entry超过了容量的3/4,需要进行扩容并插入弱引用指针的地址
if (entry->num_refs >= TABLE_SIZE(entry) * 3/4) {
return grow_refs_and_insert(entry, new_referrer);
}
// 此时不需要扩容,只需要得出哈希值
size_t begin = w_hash_pointer(new_referrer) & (entry->mask);
size_t index = begin;
size_t hash_displacement = 0;
while (entry->referrers[index] != nil) {
hash_displacement++;
index = (index+1) & entry->mask;
if (index == begin) bad_weak_table(entry);
}
if (hash_displacement > entry->max_hash_displacement) {
//存储最新一个插入的地址找到空位时走过的步数
entry->max_hash_displacement = hash_displacement;
}
weak_referrer_t &ref = entry->referrers[index];
ref = new_referrer;
entry->num_refs++;
}
grow_refs_and_insert
entry扩容并且插入弱引用指针的地址
__attribute__((noinline, used))
static void grow_refs_and_insert(weak_entry_t *entry,
objc_object **new_referrer)
{
ASSERT(entry->out_of_line());
size_t old_size = TABLE_SIZE(entry);
// 容量翻倍
size_t new_size = old_size ? old_size * 2 : 8;
size_t num_refs = entry->num_refs;
weak_referrer_t *old_refs = entry->referrers;
entry->mask = new_size - 1;
entry->referrers = (weak_referrer_t *)
calloc(TABLE_SIZE(entry), sizeof(weak_referrer_t));
entry->num_refs = 0;
entry->max_hash_displacement = 0;
// 旧的entry中的地址加入到新开辟的entry中
for (size_t i = 0; i < old_size && num_refs > 0; i++) {
if (old_refs[i] != nil) {
append_referrer(entry, old_refs[i]);
num_refs--;
}
}
// Insert
// 插入新的地址
append_referrer(entry, new_referrer);
// 释放旧的entry
if (old_refs) free(old_refs);
}
remove_referrer
static void remove_referrer(weak_entry_t *entry, objc_object **old_referrer)
{
if (! entry->out_of_line()) {
// inline的情况下只需要将对应的地址移除掉
for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {
if (entry->inline_referrers[i] == old_referrer) {
entry->inline_referrers[i] = nil;
return;
}
}
_objc_inform("Attempted to unregister unknown __weak variable "
"at %p. This is probably incorrect use of "
"objc_storeWeak() and objc_loadWeak(). "
"Break on objc_weak_error to debug.\n",
old_referrer);
objc_weak_error();
return;
}
size_t begin = w_hash_pointer(old_referrer) & (entry->mask);
size_t index = begin;
size_t hash_displacement = 0;
while (entry->referrers[index] != old_referrer) {
index = (index+1) & entry->mask;
if (index == begin) bad_weak_table(entry);
hash_displacement++;
// 超过了最大的步数,表示出了异常,因为当前的max_hash_displacement记录的是最大的步数,这应该属于一种优化。
if (hash_displacement > entry->max_hash_displacement) {
_objc_inform("Attempted to unregister unknown __weak variable "
"at %p. This is probably incorrect use of "
"objc_storeWeak() and objc_loadWeak(). "
"Break on objc_weak_error to debug.\n",
old_referrer);
objc_weak_error();
return;
}
}
// 将对应的地址指向nil,可能是因为超出了作用域此时的指针被栈回收了,因此需要置为nil,否则会出现野指针异常
entry->referrers[index] = nil;
entry->num_refs--;
}
weak_entry_remove
移除entry
static void weak_entry_remove(weak_table_t *weak_table, weak_entry_t *entry)
{
// remove entry
if (entry->out_of_line()) free(entry->referrers);
bzero(entry, sizeof(*entry));
weak_table->num_entries--;
weak_compact_maybe(weak_table);
}
weak_compact_maybe
weak_table的size太大,但是内部的entry个数太小时,需要缩减容量
// Shrink the table if it is mostly empty.
static void weak_compact_maybe(weak_table_t *weak_table)
{
size_t old_size = TABLE_SIZE(weak_table);
// Shrink if larger than 1024 buckets and at most 1/16 full.
if (old_size >= 1024 && old_size / 16 >= weak_table->num_entries) {
weak_resize(weak_table, old_size / 8);
// leaves new table no more than 1/2 full
}
}
weak_grow_maybe
检测weak_table是否需要扩容
static void weak_grow_maybe(weak_table_t *weak_table)
{
size_t old_size = TABLE_SIZE(weak_table);/**根据 mask来获取原有weak_table的容量*/
// Grow if at least 3/4 full.
if (weak_table->num_entries >= old_size * 3 / 4) {
weak_resize(weak_table, old_size ? old_size*2 : 64);
}
}
weak_resize
static void weak_resize(weak_table_t *weak_table, size_t new_size)
{
size_t old_size = TABLE_SIZE(weak_table);
weak_entry_t *old_entries = weak_table->weak_entries;
weak_entry_t *new_entries = (weak_entry_t *)
calloc(new_size, sizeof(weak_entry_t));
weak_table->mask = new_size - 1;
weak_table->weak_entries = new_entries;
weak_table->max_hash_displacement = 0;
weak_table->num_entries = 0; // restored by weak_entry_insert below
if (old_entries) {
weak_entry_t *entry;
// 得到原有entry的终点
weak_entry_t *end = old_entries + old_size;
// 遍历整个entry,插入到新开辟的空间中
for (entry = old_entries; entry < end; entry++) {
if (entry->referent) {
weak_entry_insert(weak_table, entry);
}
}
free(old_entries);
}
}
小结
当第一次创建某个对象的弱引用时,会以该对象的指针和弱引用的地址创建一个 weak_entry_t,并放在该对象所处的 SideTable 的 weak_table_t 中,然后以后所有指向该对象的弱引用的地址都会保存在该对象的 weak_entry_t 的哈希数组中,当该对象要析构时,遍历 weak_entry_t 内部数组中保存的弱引用的地址,将弱引用指向 nil,最后将 weak_entry_t 从 weak_table 中移除。