RocketMQ消息消费以及进度管理解析

最近 ONS 消息堆积的很严重,并且经常发现部分几乎没有消息消费的消费者也提示堆积,所以有必要深入了解一下
RocketMQ 的设计思路,来看看堆积量如何计算,以及如何正确的使用 Topic 以及 Consumer 等组件。

产生的问题背景在于,由于一开始对于RocketMQ不够了解,同时足够懒得原因,导致我们所有业务都仅适用了一个topic,所有业务线通过订阅不同的tag来进行消费,本次深入了解后将进行业务重构,以正确的姿势使用RocketMQ

本次要排查的问题包括:
1、消息拉取时模型,是否会将非该消费者消息的消息也拉取到客户端?
2、如何计算堆积?

问题1的本质问题是消息拉取的过滤模型在于客户端,还是在服务端?问题2的本质问题是消息如何存储计算?欲探究该问题则需要明确RocketMQ的底层存储模型设计,从顶层设计俯瞰消息队列整个框架。

底层存储模型

摘自RocketMQ技术内幕.png

commitlog 是整个消息队列存储的核心文件,而consumerquque是逻辑消息队列,主要存储commitlog offset消息长度tag的hashcode,用于在消息消费时快速定位消息在commit log文件位置,便于读取消息。IndexFile俗称索引文件,主要存储消息key的hashcode以及commitlog offset,用于通过key快速定位到消息在commit log文件位置,便于读取消息。

消息拉取模型分析

找到问题1的答案之前,先思考消息队列投递时做了什么?

DefaultMQProducer producer = new DefaultMQProducer("please_rename_unique_group_name");
// Specify name server addresses.
producer.setNamesrvAddr("localhost:9876");
//Launch the instance.
producer.start();
for (int i = 0; i < 100; i++) {
    //Create a message instance, specifying topic, tag and message body.
    Message msg = new Message("TopicTest" /* Topic */,
        "TagA" /* Tag */,
        ("Hello RocketMQ " +
            i).getBytes(RemotingHelper.DEFAULT_CHARSET) /* Message body */
    );
    //Call send message to deliver message to one of brokers.
    SendResult sendResult = producer.send(msg);
    System.out.printf("%s%n", sendResult);
}

以上是代码是从官网的地址copy而来,虽简单但是从其中足以找到消息投递时所需要的基本条件包括namesrvAddrtopictag

消息投递

// DefaultProducerImpl#sendDefaultImpl()
// 省略大部分代码,关键看备注部分
TopicPublishInfo topicPublishInfo = this.tryToFindTopicPublishInfo(msg.getTopic());// 从本地缓存或namesrv远程读取topic信息
        if (topicPublishInfo != null && topicPublishInfo.ok()) {
            boolean callTimeout = false;
            MessageQueue mq = null;
            Exception exception = null;
            SendResult sendResult = null;
            int timesTotal = communicationMode == CommunicationMode.SYNC ? 1 + this.defaultMQProducer.getRetryTimesWhenSendFailed() : 1;
            int times = 0;
            String[] brokersSent = new String[timesTotal];
            for (; times < timesTotal; times++) {
                String lastBrokerName = null == mq ? null : mq.getBrokerName();‘
                // 根据某种策略选择一个逻辑消息队列
                MessageQueue mqSelected = this.selectOneMessageQueue(topicPublishInfo, lastBrokerName);

从文中可以看到,在消息投递的过程中,已经在客户端通过某种策略找到指定的topic下的逻辑队列,逻辑队列具体指的是consumerqueue文件,服务端对应的处理主要是写入,具体有兴趣可以了解SendMessageProcessor类,最终通过DefaultMessageStore实现了数据的写入,但是并未看到写入consumerqueue,因为实现consumerqueue文件写入是通过另外的线程实现的,具体实现请参考ReputMessageService,本文不再深入。

我们主要知道,在客户端除了上传基本属性数据之外,同时还在客户端选择好了将要写入的逻辑消息队列。

消息拉取

消息的拉取在客户端就不进行赘述了,主要看服务端的实现。有兴趣可以了解PullMessageService#run()。服务端则重点查阅PullMessageProcessor#processRequest()


MessageFilter messageFilter;
if (this.brokerController.getBrokerConfig().isFilterSupportRetry()) {
    messageFilter = new ExpressionForRetryMessageFilter(subscriptionData, consumerFilterData,
        this.brokerController.getConsumerFilterManager());
} else {
         // 构建消息过滤
    messageFilter = new ExpressionMessageFilter(subscriptionData, consumerFilterData,
        this.brokerController.getConsumerFilterManager());
}

// 消息过滤的核心源码在ExpressionMessageFilter#isMatchedByConsumeQueue方法
@Override
public boolean isMatchedByConsumeQueue(Long tagsCode, ConsumeQueueExt.CqExtUnit cqExtUnit) {
    if (null == subscriptionData) {
        return true;
    }

    if (subscriptionData.isClassFilterMode()) {
        return true;
    }

    // by tags code.
    if (ExpressionType.isTagType(subscriptionData.getExpressionType())) {

        if (tagsCode == null) {
            return true;
        }

        if (subscriptionData.getSubString().equals(SubscriptionData.SUB_ALL)) {
            return true;
        }
                // tagecode其实就是tag的hashcode
        return subscriptionData.getCodeSet().contains(tagsCode.intValue());
    }
  /// ....
}


// 接着PullMessageProcessor#processRequest()往下看
final GetMessageResult getMessageResult =
            this.brokerController.getMessageStore().getMessage(requestHeader.getConsumerGroup(), requestHeader.getTopic(),
                requestHeader.getQueueId(), requestHeader.getQueueOffset(), requestHeader.getMaxMsgNums(), messageFilter);
// 注意该消息读取的参数,包括topic, queueid, queueoffset, 已经消息最大条数

// 通过DefaultMessageStore#getMessage()继续查看
// 注意,这里的offset是queueoffset,而不是commitlog offset
public GetMessageResult getMessage(final String group, final String topic, final int queueId, final long offset,
    
    // ...
    // 查找consumerqueue
    ConsumeQueue consumeQueue = findConsumeQueue(topic, queueId);
    
    // 
    SelectMappedBufferResult bufferConsumeQueue = consumeQueue.getIndexBuffer(offset);
    if (bufferConsumeQueue != null) {
        try {
            status = GetMessageStatus.NO_MATCHED_MESSAGE;

            long nextPhyFileStartOffset = Long.MIN_VALUE;
            long maxPhyOffsetPulling = 0;

            int i = 0;
            final int maxFilterMessageCount = Math.max(16000, maxMsgNums * ConsumeQueue.CQ_STORE_UNIT_SIZE);
            final boolean diskFallRecorded = this.messageStoreConfig.isDiskFallRecorded();
            ConsumeQueueExt.CqExtUnit cqExtUnit = new ConsumeQueueExt.CqExtUnit();
            for (; i < bufferConsumeQueue.getSize() && i < maxFilterMessageCount; i += ConsumeQueue.CQ_STORE_UNIT_SIZE) {
                long offsetPy = bufferConsumeQueue.getByteBuffer().getLong();
                int sizePy = bufferConsumeQueue.getByteBuffer().getInt();
                long tagsCode = bufferConsumeQueue.getByteBuffer().getLong();
                                /// .....
                                // 消息匹配,这个对象由前文的MessageFilter定义
                if (messageFilter != null
                    && !messageFilter.isMatchedByConsumeQueue(isTagsCodeLegal ? tagsCode : null, extRet ? cqExtUnit : null)) {
                    if (getResult.getBufferTotalSize() == 0) {
                        status = GetMessageStatus.NO_MATCHED_MESSAGE;
                    }

                    continue; //不匹配的消息则继续往下来读取
                }
 
                SelectMappedBufferResult selectResult = this.commitLog.getMessage(offsetPy, sizePy);// offsetPy与sizePy查找commitlog上存储的消息内容
                
  ///....
}

以上源码阅读完后,问题1 不攻自破,在服务端上过滤好消息,但是很明显,查阅完整地源码可以清晰地确定,并非是每一次拉取消息都可以过滤到自己想要的消息,即该消费者拉取消息时可能在某一个comsumerqueue上拉取不到消息,因为充斥着同一个topic下的其他tag的消息,也就意味着不是每次拉取都有意义,而阿里云ONS的计费上明显提示拉取消息是要计算费用的。

消息堆积

消息堆积意为着服务端要维护消息的消费进度。

先来看一张图,图中的brokerOffset - consumerOffset = diffTotal, 而diffTotal就是指堆积量,而描述堆积量的指标是消息条数。

image.png

从commitlog中来看,由于存储了大量的消息文件,并且消息消费是非顺序消费,继而很难从commitlog中看出哪个
哪个consumer堆积量。

那么哪里可以描述清楚消息条数呢?先来深入了解Consumer Queue的设计

ConsumerQueue

consumerqueue的设计以topic作为逻辑分区,每个topic下分多个消息队列进行,具体多少消息队列存储参照broker的配置参数,队列名称以数组0开始,比如配置0,1,2,3 四个消息队列。

配置参数请参考BrokerConfig,其中有一个参数private int defaultTopicQueueNums = 8;

从语义上理解,堆积量应该指未被消费的存在broker上的消息数量,这是基本认知。

commitlog存储着broker上所有的消息,设想一下如果每次要查询消息并消费需要从该文件遍历查询,性能之差可想
而知,为了提高查询的消息,优先想到的是诸如MySQL上的索引设计。同理,consumerqueue的设计之初就是为了
快速定位到对应的消费者可以消费的消息,当然RocketMQ也提供了indexfile,俗称索引文件,主要是解决通过key
快速定位消息的方式。

consumerqueue 消息结构

摘自RocketMQ技术内幕.png

consumerqueue的结构设计,在consumequeue的条目设计是固定的,并且它整好对应一条消息。consumerqueue单个文件默认是30w个条目,单个文件长度30w * 20字节。从文件的存储模型可以看出,consumerqueue存储维度是topic,并非是consumer。那么如何找到consumer的堆积量?

假设

假设一个topic对应一个consumertopic的堆积量即consumer的堆积量。从这个维度来推理,前文提到部分consumer是几乎没有消息,但是却提示消息堆积即合理,因为堆积的消息并非是该consumer的需要消费的消息,而是该consumerqueue对应的topic的堆积

论证过程

rocketmq console后台看到的消费者的堆积数量,看到AdminBrokerProcess#getConsumeStats()


private RemotingCommand getConsumeStats(ChannelHandlerContext ctx,   
    // ...
    for (String topic : topics) {
        // ...
        for (int i = 0; i < topicConfig.getReadQueueNums(); i++) {
            MessageQueue mq = new MessageQueue();
            mq.setTopic(topic);
            mq.setBrokerName(this.brokerController.getBrokerConfig().getBrokerName());
            mq.setQueueId(i);

            OffsetWrapper offsetWrapper = new OffsetWrapper();
            // 核心的问题在于要确定brokerOffset 以及consumerOffset的语义
            long brokerOffset = this.brokerController.getMessageStore().getMaxOffsetInQueue(topic, i);
            if (brokerOffset < 0)
                brokerOffset = 0;

            long consumerOffset = this.brokerController.getConsumerOffsetManager().queryOffset(
                requestHeader.getConsumerGroup(),
                topic,
                i);
            if (consumerOffset < 0)
                consumerOffset = 0;

    // ....
}

// 队列最大索引
public long getMaxOffsetInQueue(String topic, int queueId) {
    ConsumeQueue logic = this.findConsumeQueue(topic, queueId);
    if (logic != null) {
        long offset = logic.getMaxOffsetInQueue();
        return offset;
    }
    return 0;
}
public long getMaxOffsetInQueue() {
    return this.mappedFileQueue.getMaxOffset() / CQ_STORE_UNIT_SIZE;
  // 总的逻辑偏移量 / 20 = 总的消息条数
}

public static final int CQ_STORE_UNIT_SIZE = 20;// 前文提到每个条目固定20个字节

// 当前消费者的消费进度
long consumerOffset = this.brokerController.getConsumerOffsetManager().queryOffset(requestHeader.getConsumerGroup(),topic,i);
if (consumerOffset < 0)
    consumerOffset = 0;
    public long queryOffset(final String group, final String topic, final int queueId) {
    // topic@group
    String key = topic + TOPIC_GROUP_SEPARATOR + group;
    ConcurrentMap<Integer, Long> map = this.offsetTable.get(key);// 从offsetTable中读取
    if (null != map) {
        Long offset = map.get(queueId);
        if (offset != null)
            return offset;
    }
    return -1;
}

核心的问题在于从offset缓存中读取出来的,那么offset的数据 又是哪里来的?


// 通过IDE快速可以很快找到如下代码
@Override
public String configFilePath() {
    return
    BrokerPathConfigHelper.getConsumerOffsetPath(this.brokerController.getMessageStoreConfig().
        getStorePathRootDir());
}
@Override
public void decode(String jsonString) {
    if (jsonString != null) {
        ConsumerOffsetManager obj = RemotingSerializable.fromJson(jsonString,ConsumerOffsetManager.class);
        if (obj != null) {
            this.offsetTable = obj.offsetTable;
        }
    }
}
public static String getConsumerOffsetPath(final String rootDir) {
    return rootDir + File.separator + "config" + File.separator + "consumerOffset.json";
}

也就是说offset的数据是从json文件中加载进来的。

image.png

这个文件描述的是topic与消费者的关系,每一个队列对应的消费进度。但是消费是实时更新的,所以必须实时更新消费进度,消费进度的更新是从消息的拉取得到的。

DefaultStoreMessage

前文看过该类的部分代码,主要是拉取的部分,这里补充拉取时的offset的值得语义。


ConsumeQueueExt.CqExtUnit cqExtUnit = new ConsumeQueueExt.CqExtUnit();
for (; i < bufferConsumeQueue.getSize() && i < maxFilterMessageCount; i += ConsumeQueue.CQ_STORE_UNIT_SIZE) {
    long offsetPy = bufferConsumeQueue.getByteBuffer().getLong();
    int sizePy = bufferConsumeQueue.getByteBuffer().getInt();
    long tagsCode = bufferConsumeQueue.getByteBuffer().getLong();

    // ...
        // offsetPy 是commitlog的逻辑偏移量
    SelectMappedBufferResult selectResult = this.commitLog.getMessage(offsetPy, sizePy);
    if (null == selectResult) {
        if (getResult.getBufferTotalSize() == 0) {
            status = GetMessageStatus.MESSAGE_WAS_REMOVING;
        }

        nextPhyFileStartOffset = this.commitLog.rollNextFile(offsetPy);
        continue;
    }
        // 消息过滤
    if (messageFilter != null
        && !messageFilter.isMatchedByCommitLog(selectResult.getByteBuffer().slice(), null)) {
        if (getResult.getBufferTotalSize() == 0) {
            status = GetMessageStatus.NO_MATCHED_MESSAGE;
        }
        // release...
        selectResult.release();
        continue;
    }
    // ....
}

// ...
//
// 计算下一次开始的offset,是前文的offset
// i 是ConsumeQueue.CQ_STORE_UNIT_SIZE的倍数
// ConsumeQueue.CQ_STORE_UNIT_SIZE是每一条consumerqueue中的条目的大小,20字节
nextBeginOffset = offset + (i / ConsumeQueue.CQ_STORE_UNIT_SIZE);

long diff = maxOffsetPy - maxPhyOffsetPulling;
long memory = (long) (StoreUtil.TOTAL_PHYSICAL_MEMORY_SIZE
    * (this.messageStoreConfig.getAccessMessageInMemoryMaxRatio() / 100.0));
getResult.setSuggestPullingFromSlave(diff > memory);

看到此处,可以明确消费者拉取消息时的nextBeginOffset就是consumerqueue的偏移量/20,意味着类似下标数组index
到此处还要再确认拉取的这个消费进度是不是会更新到到offsetTable?核心看RemoteBrokerOffsetStore

消息消费

贴几张图简单了解客户端上报消费进度的过程

image.png
image.png
image.png

至此,可以看到堆积量的实际是根据topic来算,按照前文最开始的假设推断其实是成立的,那么现在那些没有消息堆积的消息为何还会显示堆积就可以理解了。

总结

消息消费属于服务端过滤模式,不过其实还要其他的消息过滤模式,只是本文并未提及(Class)。但是由于topic使用的不合理导致消息可能存在拉取不到数据,但是ONS是计算收费的。同时消息的堆积意义明朗,那么使用RocketMQ的姿势也就不言而喻,按照业务合理使用topic以及tag等。

参考资料

源码:https://github.com/apache/rocketmq
官网:http://rocketmq.apache.org/docs/rmq-deployment/
书籍:《RocketMQ技术内幕》,特别推荐该书,让你对RocketMQ的架构设计,代码有更深的了解

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,012评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,628评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,653评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,485评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,574评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,590评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,596评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,340评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,794评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,102评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,276评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,940评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,583评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,201评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,441评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,173评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,136评论 2 352

推荐阅读更多精彩内容