负载均衡 | 一致性hash算法

v2-3244e076d29c02565e07a29be205e91a_1440w.jpg

讲一致性hash算法前,先简述一下求余hash算法:

hash(object)%N

  1. 一个缓存服务器宕机了,这样所有映射到这台服务器的对象都会失效,我们需要把属于该服务器中的缓存移除,这时候缓存服务器是 N-1 台,映射公式变成了 hash(object)%(N-1) ;

  2. 由于QPS升高,我们需要添加多一台服务器,这时候服务器是 N+1 台,映射公式变成了 hash(object)%(N+1) 。

1 和 2 的改变都会出现所有服务器需要进行数据迁移。

一致性HASH算法

一致性HASH算法的出现有效的解决了上面普通求余算法在节点变动后面临全部缓存失效的问题:

type Consistent struct {
    numOfVirtualNode int
    hashSortedNodes  []uint32
    circle           map[uint32]string
    nodes            map[string]bool
}

简单地说,一致性哈希将整个哈希值空间组织成一个虚拟的圆环,如假设某空间哈希函数H的值空间是0-2^32-1(即哈希值是一个32位无符号整形),整个哈希空间如下:

image

下一步将各个服务器使用哈希算法计算出每台机器的位置,具体可以使用服务器的IP地址或者主机名作为关键字,并且是按照顺时针排列:

//这里我选择crc32,具体情况具体安排
func hashKey(host string) uint32 {
    scratch := []byte(host)
    return crc32.ChecksumIEEE(scratch)
}

这里我们假设三台节点memcache经计算后位置如下:

image
//add the node
c.Add("Memcache_server01")
c.Add("Memcache_server02")
c.Add("Memcache_server03")
func (c *Consistent) Add(node string) error {
    if _, ok := c.nodes[node]; ok {
        return errors.New("host already existed")
    }
    c.nodes[node] = true
    // add virtual node
    for i := 0; i < c.numOfVirtualNode; i++ {
        virtualKey := getVirtualKey(i, node)
        c.circle[virtualKey] = node
        c.hashSortedNodes = append(c.hashSortedNodes, virtualKey)
    }

    sort.Slice(c.hashSortedNodes, func(i, j int) bool {
        return c.hashSortedNodes[i] < c.hashSortedNodes[j]
    })
    return nil
}

接下来使用相同算法计算出数据的哈希值,并由此确定数据在此哈希环上的位置

假如我们有数据A、B、C和D,经过哈希计算后位置如下:

image

根据一致性哈希算法,数据A就被绑定到了server01上,D被绑定到了server02上,B、C在server03上,是按照顺时针找最近服务节点方法

这样得到的哈希环调度方法,有很高的容错性和可扩展性:

假设server03宕机

image

可以看到此时A、C、B不会受到影响,只是将B、C节点被重定位到Server 1。一般的,在一致性哈希算法中,如果一台服务器不可用,则受影响的数据仅仅是此服务器到其环空间中前一台服务器(即顺着逆时针方向行走遇到的第一台服务器)之间数据,其它不会受到影响。

考虑另外一种情况,如果我们在系统中增加一台服务器Memcached Server 04:

image

此时A、D、C不受影响,只有B需要重定位到新的Server 4。一般的,在一致性哈希算法中,如果增加一台服务器,则受影响的数据仅仅是新服务器到其环空间中前一台服务器(即顺着逆时针方向行走遇到的第一台服务器)之间数据,其它不会受到影响。

综上所述,一致性哈希算法对于节点的增减都只需重定位环空间中的一小部分数据,具有较好的容错性和可扩展性。

我用golang做了个简单版,官方也有package大家可以参考讨论一下:

链接Consistent Hashing

关注公众号【技术全沾】,分享更多技术好文,还有不定期派书活动。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,163评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,301评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,089评论 0 352
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,093评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,110评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,079评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,005评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,840评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,278评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,497评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,667评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,394评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,980评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,628评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,649评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,548评论 2 352

推荐阅读更多精彩内容