序
本文主要研究下reactive streams的backpressure
reactive streams跟传统streams的区别
@Test
public void testShowReactiveStreams() throws InterruptedException {
Flux.interval(Duration.ofMillis(1000))
.take(500)
.subscribe(e -> LOGGER.info("get {}",e));
Thread.sleep(5*60*1000);
}
输出实例如下:
18:52:34.118 [main] DEBUG reactor.util.Loggers$LoggerFactory - Using Slf4j logging framework
18:52:35.157 [parallel-2] INFO com.example.demo.FluxTest - get 0
18:52:36.156 [parallel-2] INFO com.example.demo.FluxTest - get 1
18:52:37.156 [parallel-2] INFO com.example.demo.FluxTest - get 2
18:52:38.159 [parallel-2] INFO com.example.demo.FluxTest - get 3
18:52:39.157 [parallel-2] INFO com.example.demo.FluxTest - get 4
18:52:40.155 [parallel-2] INFO com.example.demo.FluxTest - get 5
18:52:41.154 [parallel-2] INFO com.example.demo.FluxTest - get 6
18:52:42.158 [parallel-2] INFO com.example.demo.FluxTest - get 7
18:52:43.157 [parallel-2] INFO com.example.demo.FluxTest - get 8
18:52:44.156 [parallel-2] INFO com.example.demo.FluxTest - get 9
18:52:45.154 [parallel-2] INFO com.example.demo.FluxTest - get 10
传统的list streams不是异步的,好比如一批500件的半成品,得在A环节都处理完,才能下一个环节B,而reactive streams之所以成为reactive,就好比如这批500件的半成品,A环节每处理完一件就可以立即推往下个环节B处理,源源不断,而不是等所有的半成品都在A环节处理再推往B环节。典型的活生生的一个生产流水线的例子。
backpressure
这样一个生产流水线,有个要求就是每个环节的处理要能够协调,就像电影起跑线里头男主角去工厂打工,流水线花花往他那边推送货物,他速度跟不上,导致货物都掉地上了,最后不得不人工关掉流水线。
在应用程序里头,如果发布者速度过快,而订阅者速度慢,那么就会数据就会堆积,控制不好就容易产生内存溢出,而backpressure就专门用来解决这个问题的。
pull模型的backpressure
@Test
public void testPullBackpressure(){
Flux.just(1, 2, 3, 4)
.log()
.subscribe(new Subscriber<Integer>() {
private Subscription s;
int onNextAmount;
@Override
public void onSubscribe(Subscription s) {
this.s = s;
s.request(2);
}
@Override
public void onNext(Integer integer) {
System.out.println(integer);
onNextAmount++;
if (onNextAmount % 2 == 0) {
s.request(2);
}
}
@Override
public void onError(Throwable t) {}
@Override
public void onComplete() {}
});
try {
Thread.sleep(10*1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
push模型的backpressure
借助线程相关的操作符,比如timeout(),delayElements(),buffer(),skip(),take()来控制数据产生速度。
delayElements
@Test
public void testPushBackpressure() throws InterruptedException {
Flux.range(1, 1000)
.delayElements(Duration.ofMillis(200))
.subscribe(e -> {
LOGGER.info("subscribe:{}",e);
try {
Thread.sleep(2000);
} catch (InterruptedException e1) {
e1.printStackTrace();
}
});
Thread.sleep(100*1000);
}
输出实例
19:37:00.870 [main] DEBUG reactor.util.Loggers$LoggerFactory - Using Slf4j logging framework
19:37:01.117 [parallel-1] INFO com.example.demo.FluxTest - subscribe:1
19:37:03.326 [parallel-2] INFO com.example.demo.FluxTest - subscribe:2
19:37:05.535 [parallel-3] INFO com.example.demo.FluxTest - subscribe:3
19:37:07.743 [parallel-4] INFO com.example.demo.FluxTest - subscribe:4
19:37:09.953 [parallel-5] INFO com.example.demo.FluxTest - subscribe:5
19:37:12.156 [parallel-6] INFO com.example.demo.FluxTest - subscribe:6
19:37:14.363 [parallel-7] INFO com.example.demo.FluxTest - subscribe:7
19:37:16.568 [parallel-8] INFO com.example.demo.FluxTest - subscribe:8
19:37:18.775 [parallel-1] INFO com.example.demo.FluxTest - subscribe:9
这是个delayElements的例子,可以看到数据不丢失,但是延时是生产延时+消费延时
sample
@Test
public void testSampleBackpressure() throws InterruptedException {
Flux.range(1, 1000)
.log()
.delayElements(Duration.ofMillis(200))
.sample(Duration.ofMillis(1000))
.subscribe(e -> {
LOGGER.info("subscribe:{}",e);
try {
Thread.sleep(2000);
} catch (InterruptedException e1) {
e1.printStackTrace();
}
});
Thread.sleep(100*1000);
}
输出实例
19:48:40.516 [main] DEBUG reactor.util.Loggers$LoggerFactory - Using Slf4j logging framework
19:48:40.544 [main] INFO reactor.Flux.Range.1 - | onSubscribe([Synchronous Fuseable] FluxRange.RangeSubscription)
19:48:40.546 [main] INFO reactor.Flux.Range.1 - | onNext(1)
19:48:40.770 [parallel-2] INFO reactor.Flux.Range.1 - | onNext(2)
19:48:40.974 [parallel-3] INFO reactor.Flux.Range.1 - | onNext(3)
19:48:41.175 [parallel-4] INFO reactor.Flux.Range.1 - | onNext(4)
19:48:41.378 [parallel-5] INFO reactor.Flux.Range.1 - | onNext(5)
19:48:41.543 [parallel-1] INFO com.example.demo.FluxTest - subscribe:4
19:48:41.583 [parallel-6] INFO reactor.Flux.Range.1 - | onNext(6)
19:48:41.785 [parallel-7] INFO reactor.Flux.Range.1 - | onNext(7)
19:48:41.989 [parallel-8] INFO reactor.Flux.Range.1 - | onNext(8)
19:48:43.547 [parallel-1] INFO reactor.Flux.Range.1 - | onNext(9)
19:48:43.548 [parallel-1] INFO com.example.demo.FluxTest - subscribe:8
19:48:43.751 [parallel-2] INFO reactor.Flux.Range.1 - | onNext(10)
19:48:43.952 [parallel-3] INFO reactor.Flux.Range.1 - | onNext(11)
可以看到,由于订阅者速度慢,导致部分数据被丢弃
buffer
@Test
public void testBufferBackpressure() throws InterruptedException {
Flux.range(1, 1000)
// .log()
.delayElements(Duration.ofMillis(200))
.buffer(Duration.ofMillis(800))
.subscribe(e -> {
LOGGER.info("subscribe:{}",e);
try {
Thread.sleep(2000);
} catch (InterruptedException e1) {
e1.printStackTrace();
}
});
Thread.sleep(100*1000);
}
输出实例
19:55:06.680 [main] DEBUG reactor.util.Loggers$LoggerFactory - Using Slf4j logging framework
19:55:06.712 [main] INFO reactor.Flux.Range.1 - | onSubscribe([Synchronous Fuseable] FluxRange.RangeSubscription)
19:55:06.714 [main] INFO reactor.Flux.Range.1 - | onNext(1)
19:55:06.940 [parallel-2] INFO reactor.Flux.Range.1 - | onNext(2)
19:55:07.141 [parallel-3] INFO reactor.Flux.Range.1 - | onNext(3)
19:55:07.343 [parallel-4] INFO reactor.Flux.Range.1 - | onNext(4)
19:55:07.509 [parallel-1] INFO com.example.demo.FluxTest - subscribe:[1, 2, 3]
19:55:07.545 [parallel-5] INFO reactor.Flux.Range.1 - | onNext(5)
19:55:07.748 [parallel-6] INFO reactor.Flux.Range.1 - | onNext(6)
19:55:07.951 [parallel-7] INFO reactor.Flux.Range.1 - | onNext(7)
19:55:08.156 [parallel-8] INFO reactor.Flux.Range.1 - | onNext(8)
19:55:09.512 [parallel-1] INFO com.example.demo.FluxTest - subscribe:[4, 5, 6, 7]
19:55:11.515 [parallel-1] INFO reactor.Flux.Range.1 - | onNext(9)
19:55:11.516 [parallel-1] INFO com.example.demo.FluxTest - subscribe:[8]
19:55:11.719 [parallel-2] INFO reactor.Flux.Range.1 - | onNext(10)
19:55:11.923 [parallel-3] INFO reactor.Flux.Range.1 - | onNext(11)
19:55:12.127 [parallel-4] INFO reactor.Flux.Range.1 - | onNext(12)
19:55:12.330 [parallel-5] INFO reactor.Flux.Range.1 - | onNext(13)
19:55:12.533 [parallel-6] INFO reactor.Flux.Range.1 - | onNext(14)
19:55:12.735 [parallel-7] INFO reactor.Flux.Range.1 - | onNext(15)
19:55:12.941 [parallel-8] INFO reactor.Flux.Range.1 - | onNext(16)
19:55:13.516 [parallel-1] INFO com.example.demo.FluxTest - subscribe:[9, 10, 11, 12, 13, 14, 15]
19:55:15.517 [parallel-1] INFO reactor.Flux.Range.1 - | onNext(17)
19:55:15.517 [parallel-1] INFO com.example.demo.FluxTest - subscribe:[16]
19:55:15.721 [parallel-2] INFO reactor.Flux.Range.1 - | onNext(18)
19:55:15.925 [parallel-3] INFO reactor.Flux.Range.1 - | onNext(19)
19:55:16.127 [parallel-4] INFO reactor.Flux.Range.1 - | onNext(20)
19:55:16.331 [parallel-5] INFO reactor.Flux.Range.1 - | onNext(21)
19:55:16.537 [parallel-6] INFO reactor.Flux.Range.1 - | onNext(22)
19:55:16.738 [parallel-7] INFO reactor.Flux.Range.1 - | onNext(23)
19:55:16.942 [parallel-8] INFO reactor.Flux.Range.1 - | onNext(24)
19:55:17.519 [parallel-1] INFO com.example.demo.FluxTest - subscribe:[17, 18, 19, 20, 21, 22, 23]
19:55:19.522 [parallel-1] INFO reactor.Flux.Range.1 - | onNext(25)
19:55:19.522 [parallel-1] INFO com.example.demo.FluxTest - subscribe:[24]
将每个800ms内产生的数据堆积为一批次推送给订阅者
skip
@Test
public void testSkip() throws InterruptedException {
Flux.range(1, 1000)
.log()
.delayElements(Duration.ofMillis(200))
.skip(Duration.ofMillis(800))
.subscribe(e -> {
LOGGER.info("subscribe:{}",e);
try {
Thread.sleep(2000);
} catch (InterruptedException e1) {
e1.printStackTrace();
}
});
Thread.sleep(100*1000);
}
输出实例
20:02:07.558 [main] DEBUG reactor.util.Loggers$LoggerFactory - Using Slf4j logging framework
20:02:07.606 [main] INFO reactor.Flux.Range.1 - | onSubscribe([Synchronous Fuseable] FluxRange.RangeSubscription)
20:02:07.608 [main] INFO reactor.Flux.Range.1 - | onNext(1)
20:02:07.815 [parallel-2] INFO reactor.Flux.Range.1 - | onNext(2)
20:02:08.016 [parallel-3] INFO reactor.Flux.Range.1 - | onNext(3)
20:02:08.218 [parallel-4] INFO reactor.Flux.Range.1 - | onNext(4)
20:02:08.421 [parallel-5] INFO com.example.demo.FluxTest - subscribe:4
20:02:10.425 [parallel-5] INFO reactor.Flux.Range.1 - | onNext(5)
20:02:10.631 [parallel-6] INFO com.example.demo.FluxTest - subscribe:5
20:02:12.635 [parallel-6] INFO reactor.Flux.Range.1 - | onNext(6)
20:02:12.840 [parallel-7] INFO com.example.demo.FluxTest - subscribe:6
20:02:14.843 [parallel-7] INFO reactor.Flux.Range.1 - | onNext(7)
20:02:15.049 [parallel-8] INFO com.example.demo.FluxTest - subscribe:7
通过skip指定跳过最初一个时间段内产生的数据
take
@Test
public void testTakeBackpressure() throws InterruptedException {
Flux.range(1, 1000)
.log()
.delayElements(Duration.ofMillis(200))
.take(Duration.ofMillis(4000))
.subscribe(e -> {
LOGGER.info("subscribe:{}",e);
try {
Thread.sleep(2000);
} catch (InterruptedException e1) {
e1.printStackTrace();
}
});
Thread.sleep(100*1000);
}
输出实例
20:05:08.366 [main] DEBUG reactor.util.Loggers$LoggerFactory - Using Slf4j logging framework
20:05:08.419 [main] INFO reactor.Flux.Range.1 - | onSubscribe([Synchronous Fuseable] FluxRange.RangeSubscription)
20:05:08.422 [main] INFO reactor.Flux.Range.1 - | onNext(1)
20:05:08.629 [parallel-2] INFO com.example.demo.FluxTest - subscribe:1
20:05:10.633 [parallel-2] INFO reactor.Flux.Range.1 - | onNext(2)
20:05:10.835 [parallel-3] INFO com.example.demo.FluxTest - subscribe:2
20:05:12.418 [parallel-1] INFO reactor.Flux.Range.1 - | cancel()
通过take表示只推送前面几个或前面一段时间产生的数据给订阅者
小结
reactive streams对于具有多个阶段的数据处理来说,非常有用,可以节省很多时间,另外又有backpressure来控制订阅者速度过慢的问题,非常值得使用。