堆(上)

满足条件

  • 需要是完全二叉树。除了最后一层,其他层是满的,最后一层都靠左排列。
  • 每个节点的值必须大于等于(小于等于)其子树的每个节点的值

如何存储堆

使用数组

  • 堆是完全二叉树,使用数组比较节省空间。因为不需要存储左右子孩子节点的指针
  • 通过数组的下标就可以找到节点的父节点和左右孩子节点


    image.png
  • 如果小标从1开始。下标是i,左节点是2*i,右节点是2*i+1.父节点下标是i/2
  • 如果小标从0开始。如果节点的下标是i,那左子节点的下标就是2i+1,右子节点的下标就是2i+2,父节点的下标就是(i-1)/2
  • 这里讲解和Demo都是从下标1开始

插入数据

  • 把元素插入到最后一个位置
  • 让插入的元素和父节点比较,如果不满足子节点小于等于夫节点,就互换节点。一直重复之到堆顶。从下向上堆化
  • 时间复杂度O(logn)


    image.png
image.png
func (heap *Heap) Insert(item int) error {
    if heap.count >= heap.capacity {
        return fmt.Errorf("heap is full")
    }
    heap.count++
    //1. 放到最后
    heap.array[heap.count] = item
    i := heap.count
    //从下向上堆化
    //i/2:父节点 直到小于等于父节点,或者到了根节点
    for i/2 > 0 && heap.array[i] > heap.array[i/2] {
        swap(heap.array, i, i/2)
        i = i / 2
    }
    return nil
}

删除堆顶元素

  • 错误做法
    直接删除堆顶元素,找出左右节点中大值,替换父节点。依次递归操作直到叶子节点。这样会造成不是一个完全二叉树。


    image.png
  • 正确做法
    把最后一个节点放到堆顶,从上到下,依次递归比较和父子节点,如果不满足父子节点之间的关系,互换两个节点。知道父子节点满足大小关系。
    因为我们是移除的最后的一个节点,在堆化操作中都是互换,不会出现数组空洞,堆化完成肯定满足完全二叉树

  • 时间复杂度O(logn)


    image.png
func (heap *Heap) RemoveRoot() error {
    if heap.count <= 0 {
        return fmt.Errorf("heap is empty")
    }

    //1.把最后一个节点赋值个根节点
    heap.array[1] = heap.array[heap.count]
    heap.array[heap.count] = 0
    heap.count--
    heapify(heap.array, heap.count, 1)
    return nil
}

/**
  从上向下堆化
*/
func heapify(slice []int, count int, startIndex int) {
    for {
        maxIndex := startIndex
        //节点和自己的左右节点比较,找出最大的
        if startIndex*2 <= count && slice[maxIndex] < slice[startIndex*2] {
            maxIndex = startIndex * 2
        }

        if startIndex*2+1 <= count && slice[maxIndex] < slice[startIndex*2+1] {
            maxIndex = startIndex*2 + 1
        }

        if maxIndex == startIndex {
            //发现节点已经比自己左右节点大了,堆化完成
            break
        }
        //交互节点数据
        swap(slice, startIndex, maxIndex)
        //继续向下堆化
        startIndex = maxIndex
    }
}

在原有数组上建堆

  • 在数组上从后向前
  • 从上向下堆化
  • 叶子节点向下堆化只能和自己比较,叶子节点不参与
  • 时间复杂度O(n)


    image.png

    image.png
func BuildHeap(array []int, count int) *Heap {
    heap := NewHeap(count)
    //把数组转换成从1开始
    for i := 0; i < count; i++ {
        heap.array[i+1] = array[i]
    }

    //从非叶子节点开始(叶子节点向下堆化只能和自己比较没有意义),从上向下堆化。直到根节点(包含)
    //堆是完全二叉树,所以count / 2之后的节点都是叶子节点
    for i := count / 2; i >= 1; i-- {
        heapify(heap.array, count, i)
    }
    return heap
}

堆排序

  • 建堆
  • 堆顶元素和最后一个元素互换,最大值就到了最后。然后对n-1的堆进行进行从节点开始从上向下进行堆化。完成后把堆顶元素和n-1进行互换。重复上面的步骤一直到只有一个元素。就完成了排序
  • 时间复杂度O(nlogn)
  • 不稳定
func Sort(slice []int, count int) []int {
    //1. 建堆
    heap := BuildHeap(slice, count)
    for k := count; k > 1; {
        //2. 每次都把堆顶元素移动到最后
        swap(heap.array, 1, k)
        k--
        //3. 堆化剩余的元素,直到剩下一个元素
        heapify(heap.array, k, 1)
    }

    return heap.array
}
/**
  从上向下堆化
*/
func heapify(slice []int, count int, startIndex int) {
    for {
        maxIndex := startIndex
        //节点和自己的左右节点比较,找出最大的
        if startIndex*2 <= count && slice[maxIndex] < slice[startIndex*2] {
            maxIndex = startIndex * 2
        }

        if startIndex*2+1 <= count && slice[maxIndex] < slice[startIndex*2+1] {
            maxIndex = startIndex*2 + 1
        }

        if maxIndex == startIndex {
            //发现节点已经比自己左右节点大了,堆化完成
            break
        }
        //交互节点数据
        swap(slice, startIndex, maxIndex)
        //继续向下堆化
        startIndex = maxIndex
    }
}

和快排的比较

  • 堆排的数据读取开销比较大
    对于快排,数据是顺序访问的。对于堆排,数据是跳的访问的。
    在计算机进行运算的时候,数据不一定会从内存读取出来,而是从一种叫cache的存储单位读取。原因是cache相比内存,读取速度非常快,所以cache会把一部分我们经常读取的数据暂时储存起来,以便下一次读取的时候,可以不必跑到内存去读,而是直接在cache里面找。一般认为读取数据遵从两个原则:temporal locality,也就是不久前读取过的一个数据,在之后很可能还会被读取一遍;另一个叫spatial locality,也就是说读取一个数据,在它周围内存地址存储的数据也很有可能被读取到。因此,在读取一个单位的数据(比如1个word)之后,不光单个word会被存入cache,与之内存地址相邻的几个word,都会以一个block为单位存入cache中。
    为什么在平均情况下快速排序比堆排序要优秀
  • 对于同样的数据,在排序过程中,堆排序算法的数据交换次数要多于快速排序
    我们在讲排序的时候,提过两个概念,有序度和逆序度。对于基于比较的排序算法来说,整个排序过程就是由两个基本的操作组成的,比较和交换(或移动)。
    快速排序数据交换的次数不会比逆序度多。
    但是堆排序的第一步是建堆,建堆的过程会打乱数据原有的相对先后顺序,导致原数据的有序度降低。比如,对于一组已经有序的数据来说,经过建堆之后,数
    据反而变得更无序了
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容