2019斯坦福CS224N笔记(10)Question Answering

【2019斯坦福CS224N笔记】(10)Question Answering

csdn:https://blog.csdn.net/abcgkj

github:https://github.com/aimi-cn/AILearners


[toc] 问答系统(简称QA),是近几年比较火的NLP应用之一,常见的应用有:问答机器人、智能客服等。本节内容将主要讲解了斯坦福所提出的Stanford Attentive Reader模型,和简要分析一下其他相关模型。

问答系统主要分为两部分:

  • 找到可能包含答案的文档(使用传统的信息检索技术)
  • 在可能的文档中找到我们所需要的答案(通常称为阅读理解)

本文将重点介绍第二点,即"阅读理解"。

Stanford Attentive Reader

Stanford Attentive Reader是斯坦福在2016年的ACL会议上的《A Thorough Examination of the CNN/Daily Mail Reading Comprehension Task》发布的一个机器阅读理解模型。数据集使用的CNN和Daily Mail。

模型介绍

1.word embedding

将passage§和question(Q)中的所有单词都通过一个word embedding矩阵嵌入,用d维的词向量来表示,得到:

2.encoding

对于问题Q:把每个单词嵌入后的向量放入双向LSTM中编码,将这些向量拼接起来,得到隐藏层的最终状态q。

对于短文P:和Q一样,把每个单词嵌入后的向量放入双向LSTM中编码(但不用拼接),得到向量p_i。

3.attention

因为我们需要在文章中找到答案,因此使用得到的q向量,以解决答案在哪里使用注意力。根据文章中词语p与问题中词语q之间的相关程度,计算出一个概率分布,如下图所示

其中q为问题Q的最终状态,W为要学习的矩阵,p’_i是P的每个单词经过双向LSTM的向量表达。

得到注意力得分后,进行加权:

4.预测:上下文加权得到向量o之后,模型就能够基于此输出最有可能的答案:

5.使用负对数似然函数作为训练的目标函数。

Stanford Attentive Reader++

与上一版本的改变:

1.之前是只使用问题Q的最后一个状态的拼接,而现在我们使用LSTM中的所有状态。(其实在很多NLP任务中,这样做都是非常好的)

2.第二个改变是,这里使用3层的Bi-LSTM网络

3.词向量的改变:不仅是只使用简单的词向量,又加入了位置和命名实体识别的标记(用one-hot编码)

4.加入问题和文章的相似度计算。

BiDAF

BiDAF(全称Bi-Directional Attention Flow for Machine Comprehension),是2017年Seo等人在ICIR上提出的模型。其核心思想是:由以往的单向注意力机制转为双向注意力机制。即注意力双向流动——从上下文到问题,从问题到上下文

更多注意力机制

  • Additive Attention

  • Bilinear Attention

更多模型

2016年、2017年和2018年的大部分工作都采用了越来越复杂的架构,注意力的多样性也越来越多——通常可以获得很好的任务收益。

除了本节课介绍的一些模型外,还有一些非常好的模型。比如:给予Bert的一些模型在很多数据集上表现非常好。但是不得不说,即使问答系统前景如此广阔,但其背后的技术仍没有达到十分成熟的地步,仍有很大的进步空间。

本文使用 文章同步助手 同步

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,036评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,046评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,411评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,622评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,661评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,521评论 1 304
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,288评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,200评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,644评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,837评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,953评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,673评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,281评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,889评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,011评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,119评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,901评论 2 355

推荐阅读更多精彩内容