感知机模型

感知器是二类分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,取+1和-1二值。



w和b为感知机参数,w为权值(weight),b为偏置(bias)。sign为符号函数:



点到超平面的距离

假设点x′x′为超平面A:A: w^Tx + b = 0上的任意一点, 则点xx到AA的距离为x−x′,x−x′在超平面法向量w上的投影长度:

d = \frac {|w^T(x-x')|}{||w||} = \frac {|w^Tx + b|}{||w||}

超平面的正面与反面

一个超平面可以将它所在的空间分为两半, 它的法向量指向的那一半对应的一面是它的正面, 另一面则是它的反面.

感知机学习策略:

1.线性可分性:

对于一个数据集:T={(x1,y1),(x2,y2).....(xn,yn)}  xi属于X,yi属于Y属于{+1,-1},i=1,2,3......n;如果存在超平面S w*x+b=0 能够将数据集的正实例点和负实例点完全正确地划分到超平面的两侧,即对所有yi=+1的实例i,都有w*xi+b>0; 对于所有yi=-1的实例i,都有w*xi+b<0;则称数据集T为线性可分数据集,否则为线性不可分;

2. 感知机策略

假设训练数据集是线性可分的,感知机学习的目标就是求得一个能够将训练数据集中正负实例完全分开的分类超平面,为了找到分类超平面,即确定感知机模型中的参数w和b,需要定义一个损失函数并通过将损失函数最小化来求w和b。

这里选择的损失函数是误分类点到分类超平面S的总距离。输入空间中任一点x0到超平面S的距离为:



其中,||w||为w的L2范数。

explain:

范数(norm)是数学中的一种基本概念。在泛函分析中,它定义在赋范线性空间中,并满足一定的条件,即①非负性;②齐次性;③三角不等式。它常常被用来度量某个向量空间(或矩阵)中的每个向量的长度或大小。

x 的 0 范数:x 到零点的汉明距离

x 的 1 范数:x 到零点的曼哈顿距离

x 的 2 范数:x 到零点的欧氏距离

...

x 的 n 范数:x 到零点的 n 阶闵氏距离

x 的无穷范数:x 到零点的切比雪夫距离


假设误分类点集合为M,则误分类点到超平面S的总距离为:


损失函数即为不考虑1/||W||的集合。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,406评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,732评论 3 393
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,711评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,380评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,432评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,301评论 1 301
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,145评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,008评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,443评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,649评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,795评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,501评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,119评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,731评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,865评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,899评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,724评论 2 354

推荐阅读更多精彩内容