讲解:CIFAR-10、Python、Python、datasetMatlab|Java

Machine Learning Coursework The coursework aims to make use of the machine learning techniques to classify objects in images using CIFAR-10 dataset. The CIFAR-10 dataset consists of 60000 32x32 color images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images. The dataset is divided into five training batches and one test batch, each with 10000 images. The test batch contains exactly 1000 randomly selected images from each class. The training batches contain the remaining images in random order, but some training batches may contain more images from one class than another. Between them, the training batches contain exactly 5000 images from each class. Here are the classes in the dataset, as well as 10 random images from each:You will perform the following tasks using Python with necessary libraries (Scikit-learn and PyTorch). You can find CIFAR-10 dataset from above link. You can download the dataset and load the training and testing data according to the description from above link. Or you can use PyTorch to download the dataset (see task 3). Task 1: Apply PCA to reduce the original input features into new feature vectors with different amount of information kept, e.g. 10% dimensions, 30% dimensions, 50% dimensions, 70% dimensions, 100% dimensions. Task 2: Design and implement object recognition system using SVM. Do the following: 1.Apply linear SVM with training data to do 10-fold cross validation to train and validate your models with different input feature vectors from Task 1 (original input and reduced input calculated from Task 1). 2.Using test data to compute f1 values (for each class) and accuracy for your models and plot figures showing result vs feature dimension. 3.Use polynomial and RBF kernels to train different SVM models with original input features (non-PCA) and do 10-fold cross validation to train and validate your models. Note that each kernel has different parameters to set, for example, orders for polynomial model and sigma for RBF kernels. You shoCIFAR-10作业代做、代写Python课程作业、Python程序设计作业调试、dataset作业代写 调试Matlauld try different parameters as well. 4.Use test data to compute the f1 values for each class and accuracy for your models with different kernels and parameters. Task 3: Design and implement object recognition system using CNN. You should use PyTorch as deep learning framework. Note that there is no specific requirement on the actual architecture of your CNN. However, please do not used LeNet, this is the one we used before. You should try to play around with convolutional and pooling layers (for example, more layers or more kernel windows) for best result you can get. Use test data to compute the f1 values for each class and accuracy for your CNN. Note that in fact PyTorch does include classes and functions for downloading and making use of CIFAR-10 dataset. See https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#sphx-glr-beginner-blitzcifar10-tutorial-py for more details. Task 4: Based on your experiences of performing task 2 and task 3 and findings therein, in your own words, compare and contrast the performances (accuracy, precision and recall, f1), computational complexity (time), level of overfitting of the two approaches. To look at the level of overfitting, you can compare the performance of a given model on the training data with test data and see how different they are. State which one you think would be a better approach to this problem under certain situation and explain why. Important Notes: CIFAR-10 contains 60000 images which may cost a lot of time for training. Depending on your computer, using the whole dataset may take too much time for for both Task 2 and 3.Marking scheme: The marking distribution is given in 100 scaling as follows. Note that you should properly organize your code with appropriate comments for easy of marking and running. 1)Completeness of task 1 (10 marks) 2)Completeness of task 2 (35 marks) 3)Completeness of task 3 (35 marks) 4)Completeness of task 4 (15 marks) 5)Coding with proper comments and organization (5 marks) 转自:http://www.daixie0.com/contents/3/4483.html

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 224,861评论 6 522
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 96,263评论 3 402
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 172,033评论 0 366
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 60,999评论 1 300
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 70,000评论 6 400
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 53,483评论 1 314
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 41,850评论 3 428
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 40,827评论 0 279
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 47,366评论 1 324
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 39,404评论 3 346
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 41,525评论 1 355
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 37,130评论 5 351
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 42,853评论 3 338
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 33,293评论 0 25
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 34,426评论 1 276
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 50,082评论 3 381
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 46,590评论 2 366

推荐阅读更多精彩内容

  • Machine Learning Coursework The coursework aims to make u...
    hanyinjiu阅读 51评论 0 0
  • 青天白日 朗朗乾坤 我吃饱了 泡了杯茶 晒着太阳 开始想你 ❤️
    陈思全_e42e阅读 171评论 0 0
  • 原曲:《小小》 填词:归海临秋 同以往亲昵的模样 言笑也依旧如平常 却能感觉意味深长 冷不防双耳烫 似有似无投递眼...
    归海临秋阅读 324评论 0 2
  • 很奇怪 被一百个人安利了小美好之后 看了一整天的电视剧 把剧刷完了又去刷了小说 然后就一发不可收拾地看开了以前很喜...
    孙孙孙亿元阅读 102评论 0 0
  • 在幼儿园做饼干的手工课上,三胞胎兄妹布莱斯、萨拉、布莱克的表现截然不同:布莱斯任性冲动,他怎么高兴怎么来,把饼...
    彤宝妈2019阅读 5,032评论 2 0