zookeeper的ZAB选举与源码剖析

zookeeper在启动时,选举步骤大致有以下几个流程

1.第一轮投票
第一轮投票
2.第二轮投票
第二轮投票
3.随从

第三台机器

注:已上选举将Epoch(周期)字段简化了

zookeeper的ZAB选举选票收发核心实现图

image.png

核心代码解析

WorkerSender

  • 从sendQueue取ToSend,不是自己的选票转换成SendWorker里面的queueSendMap对象,给到SendWorker使用,自己的选票直接放入recvQueue

WorkerReceiver

  • 从RecvWorker的recvQueue取数据,如果收到的选票都是looking状态,接着将选票放入sendQueue,于此同时,收到的选票要放入无界堵塞recvQueue队列,用于选举统计。

SendWorker

  • 开启发送线程,一个myid对应一个SenderWorker,通过sid(客户端发送过来的)找到SenderWorker和ArrayBloclkingQueue,容量为1,将队列消息取出,发送。

RecvWorker

  • 开启发送线程,一个myid对应一个RecvWorker,从socket中读取数据,封装成Message(msg,sid),放入recvQueue,recvQueue为数组队列,长度100.

FastLeaderElection

  • 选票PK
protected boolean totalOrderPredicate(long newId, long newZxid, long newEpoch, long curId, long curZxid, long curEpoch) {
        LOG.debug("id: " + newId + ", proposed id: " + curId + ", zxid: 0x" +
                Long.toHexString(newZxid) + ", proposed zxid: 0x" + Long.toHexString(curZxid));
        if(self.getQuorumVerifier().getWeight(newId) == 0){
            return false;
        }

        /*
         * We return true if one of the following three cases hold:
         * 1- New epoch is higher
         * 2- New epoch is the same as current epoch, but new zxid is higher
         * 3- New epoch is the same as current epoch, new zxid is the same
         *  as current zxid, but server id is higher.
         */

        return ((newEpoch > curEpoch) ||
                ((newEpoch == curEpoch) &&
                ((newZxid > curZxid) || ((newZxid == curZxid) && (newId > curId)))));
    }
  • 选票是否达到一半
protected boolean termPredicate(Map<Long, Vote> votes, Vote vote) {
        SyncedLearnerTracker voteSet = new SyncedLearnerTracker();
        voteSet.addQuorumVerifier(self.getQuorumVerifier());
        if (self.getLastSeenQuorumVerifier() != null
                && self.getLastSeenQuorumVerifier().getVersion() > self
                        .getQuorumVerifier().getVersion()) {
            voteSet.addQuorumVerifier(self.getLastSeenQuorumVerifier());
        }

        /*
         * First make the views consistent. Sometimes peers will have different
         * zxids for a server depending on timing.
         */
        for (Map.Entry<Long, Vote> entry : votes.entrySet()) {
            if (vote.equals(entry.getValue())) {
                voteSet.addAck(entry.getKey());
            }
        }

        return voteSet.hasAllQuorums();
    }

 /**
     * Verifies if a set is a majority. Assumes that ackSet contains acks only
     * from votingMembers
     */
    public boolean containsQuorum(Set<Long> ackSet) {
        return (ackSet.size() > half);
    }
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,546评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,224评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,911评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,737评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,753评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,598评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,338评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,249评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,696评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,888评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,013评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,731评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,348评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,929评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,048评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,203评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,960评论 2 355

推荐阅读更多精彩内容