m基于码率兼容打孔LDPC码oms最小和译码算法的LDPC编译码matlab误码率仿真

1.算法仿真效果

matlab2022a仿真结果如下:


2.算法涉及理论知识概要

码率兼容打孔LDPC码BP译码算法是一种改进的LDPC译码算法,能够在不同码率下实现更好的译码性能。该算法通过在LDPC码中引入打孔操作,使得码率可以灵活地调整,同时利用BP(Belief Propagation)译码算法进行迭代译码,提高了译码的准确性和可靠性。


LDPC编码算法基于稀疏矩阵的乘积码,通过奇偶校验位来纠正传输过程中的错误。其核心思想是通过尽可能低的密度奇偶校验位来构造大量的码字,使得每个码字的校验和为0。


设原始信息位长度为k,校验位长度为r,总码字长度为n=k+r。将原始信息位放入一个长度为k的行向量中,将校验位放入一个长度为r的列向量中。然后构建一个(n-k)×n的校验矩阵H,其中每一行是一个奇偶校验位,每一列是一个码字。


为了实现码率兼容,引入打孔操作。打孔操作是指在码字中删除一些校验位,使得总码率在一定范围内可调。具体实现时,可以按照一定规则随机删除一些校验位,或者根据码率要求计算需要删除的校验位数。打孔操作后,可以得到一个新的校验矩阵H',其中每一行仍是一个奇偶校验位,但每一列可能不再是完整的码字。


偏移最小和(Offset Min-Sum, OMS)算法是MS算法的一个变种,它引入了一个偏移量(offset)来改进MS算法的解码性能,尤其是在高信噪比(SNR)条件下。OMS算法通过调整传递给校验节点的消息,减少了由于MS算法近似计算造成的性能损失。


LDPC编码算法的实现步骤如下:


生成随机的(n-k)×n的校验矩阵H;

根据要求进行打孔操作,得到新的校验矩阵H';

将原始信息位按顺序写入一个长度为k的行向量中;

根据校验矩阵H'计算校验和,得到长度为r'的列向量;

将原始信息位和校验位串联起来,得到长度为n的码字向量;

将码字向量进行比特反转,得到最终的LDPC码字。


最小和译码算法(Min-Sum Algorithm)是LDPC译码的一种简化算法,相较于标准的置信传播(Belief Propagation,BP)算法,具有更低的计算复杂度。


置信传播算法基础


BP算法是LDPC译码的基础算法,通过迭代更新变量节点和校验节点的置信度信息来进行译码。其核心步骤包括初始化、水平步骤(变量节点到校验节点)、垂直步骤(校验节点到变量节点)和判决步骤。


最小和译码算法原理


最小和算法在BP算法的基础上进行了简化,用最小值和次小值的运算代替了BP算法中的对数运算和乘法运算,从而降低了计算复杂度。


3.MATLAB核心程序

% 开始仿真

for ij = 1:length(SNRs)

err_sum = 0;

err_len = 0;

for jk = 1:MTKL

[jk,ij]

%生成随机的信息位

msgs                    = randi(2,1,Param.B)-1;

%进行代码块分割

cbs_msg                 = func_cbs(msgs,Param);

%编码

[dat_code,dat_puncture] = func_ldpc_encoder(cbs_msg,Param);

%进行速率匹配

dat_match               = func_rate_match(dat_code,Param);

%映射

dat_map                 = 2*dat_match-1;


%通过信道

Rec_data                = awgn(dat_map,SNRs(ij));


%计算对数似然比

Sigma                   = 1/10^((SNRs(ij))/10);

llr                     = -2*Rec_data./Sigma;


% 进行速率去匹配

dat_dematch             = func_rate_dematch(llr,Param);

dat_decode              = zeros(Param.C, Param.K);

for k=1:Param.C

dat_decode(k,:)    = func_oms_puncture(dat_dematch(k,:), Param, Iters,beta);

end

dat_decbs               = func_ldpc_decbs(dat_decode, Param);

err                     = sum(abs(dat_decbs - msgs));

err_sum                 = err_sum + err;

%统计一个仿真块的结果

err_len = err_len + K;

end

errors(ij) = err_sum/err_len;

end



figure;

semilogy(SNRs,errors,'b-o');

grid on

xlabel('SNR');

ylabel('error');


if Iters==1

save R1.mat  SNRs errors

end

if Iters==5

save R5.mat  SNRs errors

end

if Iters==10

save R10.mat  SNRs errors

end

if Iters==20

save R20.mat  SNRs errors

end

if Iters==50

save R50.mat  SNRs errors

end

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,997评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,603评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,359评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,309评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,346评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,258评论 1 300
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,122评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,970评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,403评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,596评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,769评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,464评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,075评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,705评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,848评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,831评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,678评论 2 354

推荐阅读更多精彩内容