ElasticSearch Java High Level REST Client之Delete By Query API

Delete By Query Request

A DeleteByQueryRequest can be used to delete documents from an index. It requires an existing index (or a set of indices) on which deletion is to be performed.

The simplest form of a DeleteByQueryRequest looks like this and deletes all documents in an index:

DeleteByQueryRequest request =
        new DeleteByQueryRequest("source1", "source2"); 

Creates the DeleteByQueryRequest on a set of indices.
By default version conflicts abort the DeleteByQueryRequest process but you can just count them with this:

request.setConflicts("proceed"); 

Set proceed on version conflict
You can limit the documents by adding a query.

request.setQuery(new TermQueryBuilder("user", "kimchy")); 

Only copy documents which have field user set to kimchy

It’s also possible to limit the number of processed documents by setting size.

request.setSize(10);

Only copy 10 documents

By default DeleteByQueryRequest uses batches of 1000. You can change the batch size with setBatchSize.

request.setBatchSize(100); 

Use batches of 100 documents
DeleteByQueryRequest can also be parallelized using sliced-scroll with setSlices:

request.setSlices(2); 

set number of slices to use
DeleteByQueryRequest uses the scroll parameter to control how long it keeps the "search context" alive.

request.setScroll(TimeValue.timeValueMinutes(10));

set scroll time

If you provide routing then the routing is copied to the scroll query, limiting the process to the shards that match that routing value.

request.setRouting("=cat"); 

set routing

Optional argumentsedit

In addition to the options above the following arguments can optionally be also provided:

request.setTimeout(TimeValue.timeValueMinutes(2)); 

Timeout to wait for the delete by query request to be performed as a TimeValue

request.setRefresh(true); 

Refresh index after calling delete by query

request.setIndicesOptions(IndicesOptions.LENIENT_EXPAND_OPEN); 

Set indices options

Synchronous executionedit
When executing a DeleteByQueryRequest in the following manner, the client waits for the DeleteByQueryResponse to be returned before continuing with code execution:

BulkByScrollResponse bulkResponse =
        client.deleteByQuery(request, RequestOptions.DEFAULT);

Synchronous calls may throw an IOException in case of either failing to parse the REST response in the high-level REST client, the request times out or similar cases where there is no response coming back from the server.

In cases where the server returns a 4xx or 5xx error code, the high-level client tries to parse the response body error details instead and then throws a generic ElasticsearchException and adds the original ResponseException as a suppressed exception to it.

Asynchronous executionedit
Executing a DeleteByQueryRequest can also be done in an asynchronous fashion so that the client can return directly. Users need to specify how the response or potential failures will be handled by passing the request and a listener to the asynchronous delete-by-query method:

client.deleteByQueryAsync(request, RequestOptions.DEFAULT, listener); 

The DeleteByQueryRequest to execute and the ActionListener to use when the execution completes

The asynchronous method does not block and returns immediately. Once it is completed the ActionListener is called back using the onResponse method if the execution successfully completed or using the onFailure method if it failed. Failure scenarios and expected exceptions are the same as in the synchronous execution case.

A typical listener for delete-by-query looks like:

listener = new ActionListener<BulkByScrollResponse>() {
    @Override
    public void onResponse(BulkByScrollResponse bulkResponse) {
        
    }  ①

    @Override
    public void onFailure(Exception e) {
        
    } ②
};

①Called when the execution is successfully completed.

②Called when the whole DeleteByQueryRequest fails.

Delete By Query Responseedit

The returned DeleteByQueryResponse contains information about the executed operations and allows to iterate over each result as follows:

TimeValue timeTaken = bulkResponse.getTook(); 
boolean timedOut = bulkResponse.isTimedOut(); 
long totalDocs = bulkResponse.getTotal(); 
long deletedDocs = bulkResponse.getDeleted(); 
long batches = bulkResponse.getBatches(); 
long noops = bulkResponse.getNoops(); 
long versionConflicts = bulkResponse.getVersionConflicts(); 
long bulkRetries = bulkResponse.getBulkRetries(); 
long searchRetries = bulkResponse.getSearchRetries(); 
TimeValue throttledMillis = bulkResponse.getStatus().getThrottled(); 
TimeValue throttledUntilMillis =
        bulkResponse.getStatus().getThrottledUntil(); 
List<ScrollableHitSource.SearchFailure> searchFailures =
        bulkResponse.getSearchFailures(); 
List<BulkItemResponse.Failure> bulkFailures =
        bulkResponse.getBulkFailures(); 

从上往下对应的解释依次为:
Get total time taken
Check if the request timed out
Get total number of docs processed
Number of docs that were deleted
Number of batches that were executed
Number of skipped docs
Number of version conflicts
Number of times request had to retry bulk index operations
Number of times request had to retry search operations
The total time this request has throttled itself not including the current throttle time if it is currently sleeping
Remaining delay of any current throttle sleep or 0 if not sleeping
Failures during search phase
Failures during bulk index operation

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,869评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,716评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,223评论 0 357
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,047评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,089评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,839评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,516评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,410评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,920评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,052评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,179评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,868评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,522评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,070评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,186评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,487评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,162评论 2 356