【生信知识】---第四代测序技术的生信软件汇总

1 碱基识别工具
Metrichor是ONT公司推出的基于隐马尔可夫模型进行碱基识别的软件。它的使用需要网络连接。MinION注册用户需要获得开发者账号才能获得软件的源代码。2016年初,两个实验室分别开发了Nanocall和DeepNano软件。这两个软件都可以在本地运行,不需要网络连接。Nanocall基于隐马尔可夫模型,可对1D read在本地进行碱基识别;DeepNano基于recurrent neural network framework,可以获得比隐马尔可夫模型更准确的碱基识别。

2 序列比对工具
传统的NGS序列比对软件不能满足MinION序列比对的需求。这是因为MinION测序数据错误率相对高且序列长,即使调整参数也不能取得好的效果。在这种情况下,适合MinION测序数据的比对软件应运而生。
MarginAlign是通过更好地估计MinION测序reads测序错误来源从而提高与参考基因组的比对效率。通过评估检测到的变异,发现其显著提高了比对的准确性。由于MarginAlign是基于LAST或BWA mem的比对结果进行优化,结果的最终准确性依赖最初的比对结果。
GraphMap是另一个用于MinION测序数据比对的软件。它利用的是一种启发式(heuristics)方法,对高错误率reads和长reads进行了优化。一项研究表明GraphMap比对的灵敏性可与BLAST媲美,且它对reads测序错误率的估计与MarginAlign相当。

3 从头组装工具
MinION测序数据不适合利用NGS数据组装的de Bruijn图法进行组装,主要存在两方面的原因。第一,de Bruijn图法等方法依赖测序reads拆分的k-mer测序准确,而高错误率的MinION测序reads不能保证这一点;第二,de Bruijn图的结构不适用长reads。
MinION测序数据的长reads更适合Sanger测序时期基于有overlap的共有(consensus)序列组装的方法。需要的是在组装前进行测序reads的纠错。第一个基于这种原理进行组装的研究组利用MinION数据组装了一个完整的E. coli K-12 MG1655基因组,序列准确率达到99.5%。他们利用的流程称为nanocorrect,首先利用graph- based,greedy partial order aligner方法进行纠错,然后利用Celera Assembler将纠错后的reads进行组装,最后利用nanopolish对组装结果进行进一步提升。

4 单核苷酸变异检测工具
Reference allele bias是一种在变异检测中倾向于少检测出变异的现象。该现象在测序reads错误率高的情况下尤为严重。
MarginAlign中的marginCaller模块是研究机构开发的适用于MinION测序数据的变异检测软件。MarginCaller利用maximum-likelihood参数估计和多条测序reads序列比对来检测单核苷酸变异。当计算机模拟出测序错误为1%时,测序深度在60X,marginCaller检测出的SNV具有97%的准确率和完整度。另外一项研究中,研究者利用GraphMap方法,检测人基因组的杂合变异,可以达到96%的准确率。利用计算机模拟的数据,GraphMap同样可以高准确率,高完整度地检测出结构变异。
Nanopolish也可以用来检测变异。它用的是event-level alignment算法。在该方法中,从参考基因组序列开始,依次评估参考基因组序列产生的电信号与测序reads的相似性进而依次修饰参考基因组序列,生成一个consensus read。直到consensus read与测序read产生的电信号足够相似,将consensus read与参考基因组序列比较,得到变异。该方法在埃博拉病毒的研究中有大约80%的准确性。
PoreSeq采用与Nanopolish类似的算法。它可以利用更低深度的测序数据获得高准确率和高完整度的SNV检测。在一项研究中,PoreSeq在16X测序深度下获得99%准确率和完整度的SNV检测,与marginAlign相比,它显著降低了测序深度。

5 共有序列的测序(consensus sequencing)方法
MinION测序数据目前只有92%的准确性。在低深度测序的情况下,不能够满足类似单体型(haplotype phasing)和人样品的SNV检测的要求。文章提到的解决问题的方法是rolling circle amplication,它的原理是将一个片段进行多次扩增,在一个DNA分子上生成多个拷贝,这样最终获得的共有序列测序结果的准确率可以达到97%。

参考链接
www.sohu.com/a/222538519_682259

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,635评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,628评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,971评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,986评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,006评论 6 394
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,784评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,475评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,364评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,860评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,008评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,152评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,829评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,490评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,035评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,156评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,428评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,127评论 2 356

推荐阅读更多精彩内容