简单模型+多次重复 = 完美(38/364)

数据驱动法是大数据的基础,也是智能革命的核心,更重要的是,它带来一种新的思维方式。

鉴于完美模型未必存在,即使存在,找到它也非常不容易而且浪费时间,因此就有人考虑是否能通过用很多简单不完美的模型凑在一起,起到完美模型的效果呢?比如说,是否可以通过很多很多圆互相嵌套在一起,建立一个地心说模型,和牛顿推演出的日心说模型一样准确呢? 如今这个答案是肯定的,从理论上讲,只要找到足够多的具有代表性的样本(数据),就可以运用数学找到一个横型或者一组模型的组合,使得它和真实情况非常接近。

这种思路在现实生活中已经被用到。比如美国和苏联在设计飞机、航天器和其他武器上的理念和方法就不同。苏联拥有大量数学功底非常深厚的设计人员,但是缺乏高性能的计算机和大量的数据,因此其科学家喜欢寻找比较准确但是复杂的数学模型;而美国的设计人员相比之下数学功底平平,但是美国的计算机拥有强大的计算能力和更多的数据,因此其科学家喜欢用很多简单的模型来替代一个复杂的模型。这两个国家做出的东西可谓各有千秋,但从结果来看,似乎美国的更胜一筹。

在工程上,采用多而简单的模型常常比一个精确的模型成本更低,也被使用得更普遍。比如在光学仪器的设计上,一个完美的镜头里面的透镜其实不应该是球面镜,因为那样边缘的图像会变形,只有采用抛物面或者其他复杂曲面,才能使得整个画面都清晰。但是这些非球面透镜的加工需要技艺高超的技工。德国因为拥有最好的技工,因此敢于在镜头设计上采用非球面透镜,这样整个光学仪器就非常小巧。而日本缺乏这种水平的技工,但是善于用机器加工,因此日本人在设计光学仪器时,就用好几个球面透镜来取代一个非球面透镜,这样的光学仪器虽然显得笨重,但是容易大规模生产,而且成本非常低。“二战”后,日本超过德国成为全球光学仪器(包括相机)第一大制造国。

回到数学模型上,其实只要数据量足够,就可以用若干个简单的模型取代一个复杂的模型。这种方法被称为数据驱动方法,因为它是先有大量的数据,而不是预设的模型,然后用很多简单的模型去契合数据(Fit Data)。虽然这种数据驱动方法在数据量不足时找到的一组模型可能和真实的模型存在一定的偏差,但是在误差允许的范围内,单从结果上看和精确的模型是等效的,这在数学上是有根据的。从原理上讲,这类似于前面提到的切比雪夫大数定律。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,185评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,445评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,684评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,564评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,681评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,874评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,025评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,761评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,217评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,545评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,694评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,351评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,988评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,778评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,007评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,427评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,580评论 2 349

推荐阅读更多精彩内容