使用 Spark 跨集群同步HDFS数据

import org.apache.log4j.{Level, Logger}
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SparkSession

object TestFileCopy {

  def main(args: Array[String]): Unit = {
    Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
    val conf: SparkConf = new SparkConf()
      .setIfMissing("spark.master", "local[4]")
      .setAppName("Test File Copy App")

    val spark: SparkSession = SparkSession.builder.config(conf).getOrCreate()

    //获取 SparkSession 的 SparkContext
    val sc: SparkContext = spark.sparkContext
//    hdfsFileCopy1(sc)
    hdfsFileCopy2(sc)
    sc.stop()
  }

  def hdfsFileCopy1(sc: SparkContext){
    // 在输入数据之前先将hadoop config配置为cluster1集群
    sc.hadoopConfiguration.addResource("cluster1/core-site.xml")
    sc.hadoopConfiguration.addResource("cluster1/hdfs-site.xml")

    val sourceDatePath = "hdfs://cluster1/tmp/"
    val source: RDD[String] = sc.textFile(sourceDatePath + "aaa.txt")

    source.foreach(println(_))
    // 再将 hadoop config 设为cluster2集群
    sc.hadoopConfiguration.addResource("cluster2/core-site.xml")
    sc.hadoopConfiguration.addResource("cluster2/hdfs-site.xml")
    val targetDatePath = "hdfs://cluster2/tmp/hdb/"
    source.saveAsTextFile(targetDatePath)
  }

  def hdfsFileCopy2(sc: SparkContext){
    // cluster1
    sc.hadoopConfiguration.set("fs.defaultFS", "hdfs://cluster1");
    sc.hadoopConfiguration.set("dfs.nameservices", "cluster1");
    sc.hadoopConfiguration.set("dfs.ha.namenodes.cluster1", "namenode98,namenode143");
    sc.hadoopConfiguration.set("dfs.namenode.rpc-address.cluster1.namenode98", "cdh-nn-01:8020");
    sc.hadoopConfiguration.set("dfs.namenode.rpc-address.cluster1.namenode143", "cdh-nn-02:8020");
    sc.hadoopConfiguration.set("dfs.client.failover.proxy.provider.cluster1", "org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider");

    val sourceDatePath = "hdfs://cluster1/tmp/"
    val source: RDD[String] = sc.textFile(sourceDatePath + "aaa.txt")
    source.foreach(println(_))

    // cluster2
    sc.hadoopConfiguration.set("fs.defaultFS", "hdfs://cluster2");
    sc.hadoopConfiguration.set("dfs.nameservices", "cluster2");
    sc.hadoopConfiguration.set("dfs.ha.namenodes.cluster2", "namenode424,namenode417");
    sc.hadoopConfiguration.set("dfs.namenode.rpc-address.cluster2.namenode424", "node-nn-01:8020");
    sc.hadoopConfiguration.set("dfs.namenode.rpc-address.cluster2.namenode417", "node-nn-02:8020");
    sc.hadoopConfiguration.set("dfs.client.failover.proxy.provider.cluster2", "org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider");

    val targetDatePath = "hdfs://cluster2/tmp/hdb/"
    source.saveAsTextFile(targetDatePath)
  }
}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,588评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,456评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,146评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,387评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,481评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,510评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,522评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,296评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,745评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,039评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,202评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,901评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,538评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,165评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,415评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,081评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,085评论 2 352