Python中的random模块

Python中的random模块用于生成随机数。下面介绍一下random模块中最常用的几个函数。
random.random
random.random()用于生成一个0到1的随机符点数: 0 <= n < 1.0
random.uniform
random.uniform的函数原型为:random.uniform(a, b),用于生成一个指定范围内的随机符点数,两个参数其中一个是上限,一个是下限。如果a > b,则生成的随机数n: a <= n <= b。如果 a <b, 则 b <= n <= a。

print random.uniform(10, 20)  
print random.uniform(20, 10)  
#---- 结果(不同机器上的结果不一样)  
#18.7356606526  
#12.5798298022 
print random.uniform(10, 20) print random.uniform(20, 10) #---- 结果(不同机器上的结果不一样) #18.7356606526 #12.5798298022

random.randint
random.randint()的函数原型为:random.randint(a, b),用于生成一个指定范围内的整数。其中参数a是下限,参数b是上限,生成的随机数n: a <= n <= b

print random.randint(12, 20)  #生成的随机数n: 12 <= n <= 20  
print random.randint(20, 20)  #结果永远是20  
print random.randint(20, 10)  #该语句是错误的。下限必须小于上限。  
print random.randint(12, 20) #生成的随机数n: 12 <= n <= 20 print random.randint(20, 20) #结果永远是20 
print random.randint(20, 10) #该语句是错误的。下限必须小于上限。

random.randrange
random.randrange的函数原型为:random.randrange([start], stop[, step]),从指定范围内,按指定基数递增的集合中 获取一个随机数。如:random.randrange(10, 100, 2),结果相当于从[10, 12, 14, 16, ... 96, 98]序列中获取一个随机数。random.randrange(10, 100, 2)在结果上与 random.choice(range(10, 100, 2) 等效。

random.choice
random.choice从序列中获取一个随机元素。其函数原型为:random.choice(sequence)。参数sequence表示一个有序类型。这里要说明 一下:sequence在python不是一种特定的类型,而是泛指一系列的类型。list, tuple, 字符串都属于sequence。有关sequence可以查看python手册数据模型这一章。下面是使用choice的一些例子:

print random.choice("学习Python")   
print random.choice(["JGood", "is", "a", "handsome", "boy"])  
print random.choice(("Tuple", "List", "Dict"))  
print random.choice("学习Python") 
print random.choice(["JGood", "is", "a", "handsome", "boy"]) 
print random.choice(("Tuple", "List", "Dict"))

random.shuffle
random.shuffle的函数原型为:random.shuffle(x[, random]),用于将一个列表中的元素打乱。如:

p = ["Python", "is", "powerful", "simple", "and so on..."]  
random.shuffle(p)  
print p  
#---- 结果(不同机器上的结果可能不一样。)  
#['powerful', 'simple', 'is', 'Python', 'and so on...']  
p = ["Python", "is", "powerful", "simple", "and so on..."] 
random.shuffle(p) 
print p 
#---- 结果(不同机器上的结果可能不一样。) 
#['powerful', 'simple', 'is', 'Python', 'and so on...']

random.sample
random.sample的函数原型为:random.sample(sequence, k),从指定序列中随机获取指定长度的片断。sample函数不会修改原有序列。

list = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]  
slice = random.sample(list, 5)  #从list中随机获取5个元素,作为一个片断返回  
print slice  
print list #原有序列并没有改变。



随机整数:
>>> import random
>>> random.randint(0,99)
21

随机选取0到100间的偶数:
>>> import random
>>> random.randrange(0, 101, 2)
42

随机浮点数:
>>> import random
>>> random.random() 
0.85415370477785668
>>> random.uniform(1, 10)
5.4221167969800881

随机字符:
>>> import random
>>> random.choice('abcdefg&#%^*f')
'd'

多个字符中选取特定数量的字符:
>>> import random
random.sample('abcdefghij',3) 
['a', 'd', 'b']

多个字符中选取特定数量的字符组成新字符串:
>>> import random
>>> import string
>>> string.join(random.sample(['a','b','c','d','e','f','g','h','i','j'], 3)).r
eplace(" ","")
'fih'

随机选取字符串:
>>> import random
>>> random.choice ( ['apple', 'pear', 'peach', 'orange', 'lemon'] )
'lemon'

洗牌:
>>> import random
>>> items = [1, 2, 3, 4, 5, 6]
>>> random.shuffle(items)
>>> items
[3, 2, 5, 6, 4, 1]
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,125评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,293评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,054评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,077评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,096评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,062评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,988评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,817评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,266评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,486评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,646评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,375评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,974评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,621评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,642评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,538评论 2 352

推荐阅读更多精彩内容