监督学习(三)——线性模型:OLS

1、用于回归的线性模型

线性模型的预测公式一般为:
y = w[0]*x[0]+w[1]*x[1]+ ··· +w[p]*x[p]+b
上面的公式中,x[0]到x[p]标识的是单个数据的特征,w[0]到w[p]是对应特征的权重,y是预测结果,b是偏移量。
如果是单一变量,公式就变为:
y = w*x + b
就变成一条直线方程,这时候w就是斜率,b是截距。

'''
    1、用于回归的线性模型
    单一特征的线性回归
'''
def linear_mglearn_wave():
    mglearn.plots.plot_linear_regression_wave()
    plt.show()
直线.png

单一特征的预测结果是一条直线,两个特征的预测结果是一个平面,更多特征就是超平面。下面介绍最常见的线性回归模型。

2、线性回归(普通最小二乘法)

线性回归,或者普通最小二乘法(OLS),是回归问题最简单的线性方法。线性回归寻找参数w和b,使得对训练集的预测值与真实的回归目标值y之间的均方误差最小均方误差是预测值与真实值之差的平方和除以样本数。

'''
    2、线性回归,普通最小二乘法
'''
def LinearRegression_method():

    # *****  欠拟合
    # X, y = mglearn.datasets.make_wave(n_samples=60)
    # X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
    # lr = LinearRegression().fit(X_train, y_train)
    #
    # print("斜率(特征权重) lr.coef_: {}".format(lr.coef_))
    # print("偏移(截距) lr.intercept_: {}".format(lr.intercept_))
    # # lr.coef_是一个数组,原因是因为当多个特征时,返回的就是多个特征对应的权重
    #
    # print("Training set score: {:.2f}".format(lr.score(X_train, y_train)))
    # print("Test set score: {:.2f}".format(lr.score(X_test, y_test)))
    # 根据训练结果和测试结果,认为是欠拟合

    # *****  过拟合
    X, y = mglearn.datasets.load_extended_boston()
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
    lr = LinearRegression().fit(X_train, y_train)
    print("Training set score: {:.2f}".format(lr.score(X_train, y_train)))
    print("Test set score: {:.2f}".format(lr.score(X_test, y_test)))
    # 根据训练结果和测试结果,认为是过拟合

这里有两组输出:

上面4个:
斜率(特征权重) lr.coef_: [0.39390555]
偏移(截距) lr.intercept_: -0.031804343026759746
Training set score: 0.67
Test set score: 0.66
下面2个:
Training set score: 0.95
Test set score: 0.61

这里用了两种不同的数据。先说上面的一组数据;
这组数据最后训练分数和测试分数很相近,这说明欠拟合,而不是过拟合。这是因为一维数据,训练模型很简单,很难出现过拟合。
而下面一组数据,其特征值很多,也就是高维度的数据。最后的得分,训练集和测试集的性能差异是过拟合的明显标志。
通过这两组数据,我们发现在训练过程中,我们无法控制训练模型的复杂度。那么我们需要可以控制复杂度的训练模型。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,133评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,682评论 3 390
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,784评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,508评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,603评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,607评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,604评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,359评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,805评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,121评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,280评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,959评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,588评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,206评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,193评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,144评论 2 352