The Sprague-Grundy theory

前言


The Sprague-Grundy theory是博弈论中解决公平游戏的一个重要定理。这里不对定理进行展开解释与证明,有兴趣的可以去看一下百度上Nim游戏对于定理的运用,也可以在下面解题中体会其中原理,这里直接给出定理:

Sprague-Grundy定理:
设gi为一个游戏Gi的Sprague-Grundy函数,则组合游戏G=G1+G2+…+Gn的Sprague-Grundy函数g(x)=g1(x1)^ g2(x2)^ …^gn(xn)。

题目(来源GCJ2019 1C Bacterial Tactics)


Problem
Becca and Terry are microbiologists who have a friendly rivalry. When they need a break from their research, they like to play a game together. The game is played on a matrix of unit cells with R rows and C columns. Initially, each cell is either empty, or contains radioactive material.

On each player's turn, if there are no empty cells in the matrix, that player loses the game. Otherwise, they choose an empty cell and place a colony of bacteria there. Bacteria colonies come in two types: H (for "horizontal") and V (for "vertical").

When a type H colony is placed into an empty cell, it occupies that cell (making it non-empty), and also tries to spread into the cell immediately to the west (if there is one) and the cell immediately to the east (if there is one).
When a type V colony is placed into an empty cell, it occupies that cell (making it non-empty), and also tries to spread into the cell immediately to the south (if there is one) and the cell immediately to the north (if there is one).
Whenever a colony (of either type) tries to spread into a cell:

If the cell contains radioactive material, the colony mutates and the player who placed the colony loses the game.
If that cell is empty, the colony occupies that cell (making it non-empty), and then the rule above is triggered again (i.e. the colony will try to spread further).
If the cell already contains bacteria (of any type), the colony does not spread into that cell.
Notice that it may be possible that all of a player's available moves would cause them to lose the game, and so they are doomed. See the sample case explanations below for examples of how the game works.

Becca makes the first move, and then the two players alternate moves until one of them loses the game. If both players play optimally, who will win? And, if Becca will win, how many distinct winning opening moves does she have? (Two opening moves are distinct if and only if they either use different cells, or different kinds of colony, or both.)

Input
The first line of the input gives the number of test cases, T. T test cases follow. Each case begins with one line containing two integers R and C: the number of rows and columns, respectively, in the matrix. Then, there are R more rows of C characters each. The j-th character on the i-th of these lines represents the j-th column of the i-th row of the matrix. Each character is either . (an empty cell) or # (a cell with radioactive material).

Output
For each test case, output one line containing Case #x: y, where x is the test case number (starting from 1), and y is an integer: either 0 if Becca will not win, or, if Becca will win, the number of distinct winning opening moves she can make, as described above.

Limits
Time limit: 30 seconds per test set.
Memory limit: 1GB.
1 ≤ T ≤ 100.

Test set 1 (Visible)
1 ≤ R ≤ 4.
1 ≤ C ≤ 4.

Test set 2 (Hidden)
1 ≤ R ≤ 15.
1 ≤ C ≤ 15.

Sample

Input 
   
5
2 2
..
.#
4 4
.#..
..#.
#...
...#
3 4
#.##
....
#.##
1 1
.
1 2
##

Output 
 
Case #1: 0
Case #2: 0
Case #3: 7
Case #4: 2
Case #5: 0

In Sample Case #1, Becca cannot place an H colony in the southwest empty cell or a V colony in the northeast empty cell, because those would spread onto a radioactive cell and Becca would lose. She has only two possible strategies that do not cause her to lose immediately:

Place an H colony in the northwest or northeast empty cells. The colony will also spread to the other of those two cells.
Place a V colony in the northwest or southwest empty cell. The colony will also spread to the other of those two cells.
If Becca chooses strategy 1, Terry can place a V colony in the southwest empty cell. If Becca chooses strategy 2, Terry can place an H colony in the northeast empty cell. Either way, Becca has no empty cells to choose from on her next turn, so she loses and Terry wins.

In Sample Case #2, any of Becca's opening moves would cause a mutation.

In Sample Case #3, five of Becca's possible opening moves would cause a mutation, but the other seven are winning. She can place an H colony in any of the cells of the second row, or she can place a V colony in any of the cells of the second column. In either case, she leaves two disconnected sets of 1 or 2 cells each. In each of those sets, only one type of colony can be played, and playing it consumes all of the empty cells in that set. So, whichever of those sets Terry chooses to consume, Becca can consume the other, leaving Terry with no moves.

In Sample Case #4, both of Becca's two distinct possible opening moves are winning.

In Sample Case #5, Becca has no possible opening moves.

分析


题目大意是在R×C上的“棋盘”上,B和T轮流放置细菌,细菌有两种,V和H,V会在棋盘上上下去衍生,如果没有阻断最终填满整列,H会在棋盘上左右衍生,如果没有阻断最终填满整行。
这其中有限制,如果细菌衍生过程中会碰到放射性物质“#”,那么就不能放置该细菌。如果遇到其他细菌占领的位置,也不会继续衍生下去。

例如某行状态是...V..#,我在首位放置H,那么会变成HHHV..#然后停止。

最后,B和T谁没有办法放置新的细菌就输掉游戏。
根据题目解释,这个很明显是一个公平游戏,就会用到Sprague-Grundy theory。

解法:
首先,因为细菌只能左右、上下衍生,我们只需要观察某行、某列的放射性位置,来确实是否可以放置细菌。为何后面能快速确定是否可以放置细菌,我们提前记录放射性位置。

比如某行..#..#,我们记录这一行为[0,0,3,3,3,6],这样当我们棋盘列缩小到4,5的时候,我们是可以放置H的,因为这行的4,5记录的放射元素位置在3,不在4,5列的范围内,是安全的。(当然这个操作不是必须的,你也可以每次去迭代去查询是否安全,对算法耗时影响较小)。

接下来,我们就要按SG定理来确定B先手能否获胜了,我们需要遍历行和列确定可以放置细菌的话,我们判断他分割下来的子棋盘T是否有机会获胜,如果不能获胜(SG(sub1)^SG(sub2) == 0),我们这个位置放置细菌就能赢(SG>1)。

例如样例输入3中:
3 4
#.##
....
#.##
如果我们在第一行第二列放置V,
那么棋盘就分割成左右两个,然后我们就可以迭代解决子问题。
# v ##
. v ..
# v ##

最后,为了能加快迭代效率,我们需要用Mark[20][20][20][20]记录每个子棋盘SG的值,这样就避免重复操作(初始值选-1,这里我开始用0结果超时,因为等于0其实也是有意义的没必要继续迭代)。当B能赢后,只需要再计算一下他可以初始放置的位置个数,这个过程很容易理解就不解释了。

解法代码


// 😊
//  main.cpp
//  Bacterial Tactics
//
//  Created by Jiao Liu on 5/15/19.
//  Copyright © 2019 ChangHong. All rights reserved.
//

#include <iostream>
#include <string.h>
#include <set>

using namespace std;

int t,r,c;
char grid[20][20];
int hFlag[20][20], vFlag[20][20], mark[20][20][20][20];

void initG()
{
    memset(grid, 0, sizeof(grid));
    for (int i = 1; i <= r; i++) {
        for (int j = 1; j <= c; j++) {
            cin>>grid[i][j];
        }
    }
}

void initFlag()
{
    memset(hFlag, 0, sizeof(hFlag));
    memset(vFlag, 0, sizeof(vFlag));
    for (int i = 1; i <= r; i++) {
        for (int j = 1; j <= c; j++) {
            if (grid[i][j] == '.') {
                hFlag[i][j] = hFlag[i][j-1];
            } else {
                hFlag[i][j] = j;
            }
        }
    }
    for (int j = 1; j <= c; j++) {
        for (int i = 1; i <= r; i++) {
            if (grid[i][j] == '.') {
                vFlag[i][j] = vFlag[i-1][j];
            } else {
                vFlag[i][j] = i;
            }
        }
    }
}

int mex(set<int> &t)
{
    int a = 0;
    while (t.count(a)) {
        a++;
    }
    return a;
}

int solve(int left, int right, int top, int bot)
{
    if (left > right || top > bot) {
        return 0;
    }
    if (mark[left][right][top][bot] != -1) {
        return mark[left][right][top][bot];
    }
    set<int> sg = {};
    for (int i = top; i <= bot; i++) {
        if (hFlag[i][right] < left) {
            sg.insert(solve(left, right, top, i-1)^solve(left, right, i+1, bot));
        }
    }
    
    for (int i = left; i <= right; i++) {
        if (vFlag[bot][i] < top) {
            sg.insert(solve(left, i-1, top, bot)^solve(i+1, right, top, bot));
        }
    }
    
    mark[left][right][top][bot] = mex(sg);
    
    return mark[left][right][top][bot];
}

int nMove()
{
    int ans = 0;
    for (int i = 1; i <= r; i++) {
        if (hFlag[i][c] == 0) {
            ans += c * ((solve(1, c, 1, i-1)^solve(1, c, i+1, r)) == 0);
        }
    }
    for (int i = 1; i <= c; i++) {
        if (vFlag[r][i] == 0) {
            ans += r * ((solve(1, i-1, 1, r)^solve(i+1, c, 1, r)) == 0);
        }
    }
    return ans;
}

int main(int argc, const char * argv[]) {
    cin>>t;
    for (int i = 1; i <= t; i++) {
        cin>>r>>c;
        initG();
        initFlag();
        memset(mark, -1, sizeof(mark));
        cout<<"Case #"<<i<<": "<<(solve(1, c, 1, r) == 0 ? 0 : nMove())<<endl;
    }
    return 0;
}

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,014评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,796评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,484评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,830评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,946评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,114评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,182评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,927评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,369评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,678评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,832评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,533评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,166评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,885评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,128评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,659评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,738评论 2 351

推荐阅读更多精彩内容