原题
子母题 : unique paths
思路:
用到dp的思想,到row,col点路径数量 :
path[row][col]=path[row][col-1]+path[row-1][col];
遍历row*col,如果map[row][col]为1,则将其置为0;如果非1,则进行上述公式。
最后返回path[终点row][终点col]的值即为解。
一开始的代码,beat 44%,效率不高
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>> &obstacleGrid) {
int rowSize = obstacleGrid.size();
int colSize = obstacleGrid[0].size();
if (obstacleGrid[0][0] == 1) return 0;
obstacleGrid[0][0] = 1;
for (int col = 1; col < colSize; col++) {
if (obstacleGrid[0][col] == 1)
obstacleGrid[0][col] = 0;
else
obstacleGrid[0][col] += obstacleGrid[0][col - 1];
}
for (int row = 1; row < rowSize; row++) {
if (obstacleGrid[row][0] == 1)
obstacleGrid[row][0] = 0;
else
obstacleGrid[row][0] += obstacleGrid[row-1][0];
}
for (int i = 1; i < rowSize; i++) {
for (int j = 1; j < colSize; j++) {
if (obstacleGrid[i][j] == 1)
obstacleGrid[i][j] = 0;
else
obstacleGrid[i][j] = obstacleGrid[i - 1][j] + obstacleGrid[i][j - 1];
}
}
return obstacleGrid[rowSize - 1][colSize - 1];
}
};
优化后的代码:
使用额外一个数组记录走到每一列有几种走法,因为题目只求终点,则使用一维数组即可。
使用一个额外的整型pre记录当前的前一步有多少种走法。(左边走来+上边走来)
则有:
pre(当前)=dp[col](上一行当前列) + pre(左一格当前行);
dp[col](当前)=pre;
beat 100%
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>> &obstacleGrid) {
int rowSize = obstacleGrid.size();
int colSize = obstacleGrid[0].size();
int dp[colSize] = {0};
int pre = 1;
for (int i = 0; i < rowSize; i++) {
for (int j = 0; j < colSize; j++) {
if (obstacleGrid[i][j] == 0) {
pre += dp[j];
dp[j] = pre;
}
else {
pre = 0;
dp[j] = 0;
}
}
pre=0;
}
return dp[colSize-1];
}
};