4.12-自动补全与基于上下文的提示

The Completion Suggester

  • Completion Suggester 提供了“⾃动完成” (Auto Complete) 的功能。⽤户每输⼊⼀个 字符,就需要即时发送⼀个查询请求到后段查找匹配项

  • 对性能要求⽐较苛刻。Elasticsearch 采⽤了不同的数据结构,并⾮通过倒排索引来完成。
    ⽽是将 Analyze 的数据编码成 FST 和索引⼀起存放。FST 会被 ES 整个加载进内存, 速度很快

  • FST 只能⽤于前缀查找

使⽤ Completion Suggester 的⼀些步骤

  • 定义 Mapping,使⽤ “completion” type

  • 索引数据

  • 运⾏ “suggest” 查询,得到搜索建议

PUT articles
{
  "mappings": {
    "properties": {
      "title_completion":{
        "type": "completion"
      }
    }
  }
}

索引数据

POST articles/_bulk
{ "index" : { } }
{ "title_completion": "lucene is very cool"}
{ "index" : { } }
{ "title_completion": "Elasticsearch builds on top of lucene"}
{ "index" : { } }
{ "title_completion": "Elasticsearch rocks"}
{ "index" : { } }
{ "title_completion": "elastic is the company behind ELK stack"}
{ "index" : { } }
{ "title_completion": "Elk stack rocks"}
{ "index" : {} }

搜索数据

POST articles/_search?pretty
{
  "size": 0,
  "suggest": {
    "article-suggester": {
      "prefix": "elk ",
      "completion": {
        "field": "title_completion"
      }
    }
  }
}
res

什么是 Context Suggester

  • Completion Suggester 的扩展

  • 可以在搜索中加⼊更多的上下⽂信息,例如,输⼊ “star”

    • 咖啡相关:建议 “Starbucks”

    • 电影相关:”star wars”

实现 Context Suggester

  • 可以定义两种类型的 Context

    • Category – 任意的字符串

    • Geo – 地理位置信息

  • 实现 Context Suggester 的具体步骤

    • 定制⼀个 Mapping

    • 索引数据,并且为每个⽂档加⼊ Context 信息

    • 结合 Context 进⾏ Suggestion 查询

定义 Mapping

  • 增加 Contexts

    • Type

    • name

PUT comments/_mapping
{
  "properties": {
    "comment_autocomplete":{
      "type": "completion",
      "contexts":[{
        "type":"category",
        "name":"comment_category"
      }]
    }
  }
}

索引数据

image.png

不同的上下⽂,⾃动提示

POST comments/_search
{
  "suggest": {
    "MY_SUGGESTION": {
      "prefix": "sta",
      "completion":{
        "field":"comment_autocomplete",
        "contexts":{
          "comment_category":"coffee"
        }
      }
    }
  }
}
image.png

精准度和召回率

  • 精准度

    • Completion > Phrase > Term
  • 召回率

    • Term > Phrase > Completion
  • 性能

    • Completion > Phrase > Term

本节知识点回顾

  • Completion Suggester,对性能要求⽐较苛刻。采⽤了不同的数据结构,并⾮通过倒排
    索引来完成。⽽是将 Analyze 的数据编码成 FST 和索引⼀起存放。FST 会被 ES 整个 加载进内存,速度很快

  • 需要设置特定的 Mapping

  • Context Completion Suggester ⽀持结合不同的上下⽂,给出推荐

课程demo

DELETE articles
PUT articles
{
  "mappings": {
    "properties": {
      "title_completion":{
        "type": "completion"
      }
    }
  }
}

POST articles/_bulk
{ "index" : { } }
{ "title_completion": "lucene is very cool"}
{ "index" : { } }
{ "title_completion": "Elasticsearch builds on top of lucene"}
{ "index" : { } }
{ "title_completion": "Elasticsearch rocks"}
{ "index" : { } }
{ "title_completion": "elastic is the company behind ELK stack"}
{ "index" : { } }
{ "title_completion": "Elk stack rocks"}
{ "index" : {} }


POST articles/_search?pretty
{
  "size": 0,
  "suggest": {
    "article-suggester": {
      "prefix": "elk ",
      "completion": {
        "field": "title_completion"
      }
    }
  }
}


DELETE comments
PUT comments
PUT comments/_mapping
{
  "properties": {
    "comment_autocomplete":{
      "type": "completion",
      "contexts":[{
        "type":"category",
        "name":"comment_category"
      }]
    }
  }
}

POST comments/_doc
{
  "comment":"I love the star war movies",
  "comment_autocomplete":{
    "input":["star wars"],
    "contexts":{
      "comment_category":"movies"
    }
  }
}

POST comments/_doc
{
  "comment":"Where can I find a Starbucks",
  "comment_autocomplete":{
    "input":["starbucks"],
    "contexts":{
      "comment_category":"coffee"
    }
  }
}


POST comments/_search
{
  "suggest": {
    "MY_SUGGESTION": {
      "prefix": "sta",
      "completion":{
        "field":"comment_autocomplete",
        "contexts":{
          "comment_category":"coffee"
        }
      }
    }
  }
}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351

推荐阅读更多精彩内容