数据结构(二):二叉搜索树(Binary Search Tree)

二分法猜数字的游戏应该每个人都知道,通过对猜测数字“大了”、“小了”的情况判断,来猜出最终的数字。序列范围为 n 的集合,复杂度为 O(log_2 n),即最多需要 log_2 n 次可以猜到最终数字。

引子

二分法的查找过程是,在一个有序的序列中,每次都会选择有效范围中间位置的元素作判断,即每次判断后,都可以排除近一半的元素,直到查找到目标元素或返回不存在,所以 n 个有序元素构成的序列,查找的时间复杂度为 O(log_2 n)。既然线性结构能够做到查询复杂度为 O(log_2 n) 级别,那二叉搜索树产生又有何必要呢?毕竟二叉搜索树的查询复杂度只是介于 O(log_2 n)~O(n) 之间,并不存在查询优势。

定义

二叉搜索树是一种节点值之间具有一定数量级次序的二叉树,对于树中每个节点:

  • 若其左子树存在,则其左子树中每个节点的值都不大于该节点值;
  • 若其右子树存在,则其右子树中每个节点的值都不小于该节点值。

示例:


BST

查询复杂度

观察二叉搜索树结构可知,查询每个节点需要的比较次数为节点深度加一。如深度为 0,节点值为 “6” 的根节点,只需要一次比较即可;深度为 1,节点值为 “3” 的节点,只需要两次比较。即二叉树节点个数确定的情况下,整颗树的高度越低,节点的查询复杂度越低。

二叉搜索树的两种极端情况:

【1】 完全二叉树,所有节点尽量填满树的每一层,上一层填满后还有剩余节点的话,则由左向右尽量填满下一层。如上图BST所示,即为一颗完全二叉树;
【2】每一层只有一个节点的二叉树。如下图SP_BST所示:

SP_BST

第【1】种情况下的查找次数分析:由上一章 二叉树 可知,完美二叉树中树的深度与节点个数的关系为:n=2^{d+1}-1。设深度为 d 的完全二叉树节点总数为 n_c,因为完全二叉树中深度为 d 的叶子节点层不一定填满,所以有 n_c \le 2^{d+1}-1,即:d+1 \ge log_2{(n_c+1)},因为 d+1 为查找次数,所以完全二叉树中查找次数为:\lceil log_2{(n_c+1)} \rceil

第【2】种情况下,树中每层只有一个节点,该状态的树结构更倾向于一种线性结构,节点的查询类似于数组的遍历,查询复杂度为 O(n)

所以二叉搜索树的查询复杂度为 O(log_2 n)~O(n)

构造复杂度

二叉搜索树的构造过程,也就是将节点不断插入到树中适当位置的过程。该操作过程,与查询节点元素的操作基本相同,不同之处在于:

  • 查询节点过程是,比较元素值是否相等,相等则返回,不相等则判断大小情况,迭代查询左、右子树,直到找到相等的元素,或子节点为空,返回节点不存在
  • 插入节点的过程是,比较元素值是否相等,相等则返回,表示已存在,不相等则判断大小情况,迭代查询左、右子树,直到找到相等的元素,或子节点为空,则将节点插入该空节点位置。

由此可知,单个节点的构造复杂度和查询复杂度相同,为 O(log_2 n)~O(n)

删除复杂度

二叉搜索树的节点删除包括两个过程,查找和删除。查询的过程和查询复杂度已知,这里说明一下删除节点的过程。

节点的删除有以下三种情况:
  1. 待删除节点度为零;
  2. 待删除节点度为一;
  3. 待删除节点度为二。

第一种情况如下图 s_1 所示,待删除节点值为 “6”,该节点无子树,删除后并不影响二叉搜索树的结构特性,可以直接删除。即二叉搜索树中待删除节点度为零时,该节点为叶子节点,可以直接删除;

s_1
s_1'

第二种情况如下图 s_2 所示,待删除节点值为 “7”,该节点有一个左子树,删除节点后,为了维持二叉搜索树结构特性,需要将左子树“上移”到删除的节点位置上。即二叉搜索树中待删除的节点度为一时,可以将待删除节点的左子树或右子树“上移”到删除节点位置上,以此来满足二叉搜索树的结构特性。

s_2
s_2'

第三种情况如下图 s_3 所示,待删除节点值为 “9”,该节点既有左子树,也有右子树,删除节点后,为了维持二叉搜索树的结构特性,需要从其左子树中选出一个最大值的节点,“上移”到删除的节点位置上。即二叉搜索树中待删除节点的度为二时,可以将待删除节点的左子树中的最大值节点“移动”到删除节点位置上,以此来满足二叉搜索树的结构特性。

其实在真实的实现代码中,该情况下的实际节点删除操作是:
1.查找出左子树中的最大值节点 Node_{max}
2.替换待删除节点 node 的值为 Node_{max} 的值
3.删除 Node_{max} 节点
因为 Node_{max} 作为左子树的最大值节点,所以节点的度一定是 0 或 1,所以删除节点的情况就转移为以上两种情况。

s_3
s_3'

之前提到二叉搜索树中节点的删除操作,包括查询和删除两个过程,这里称删除节点后,维持二叉搜索树结构特性的操作为“稳定结构”操作,观察以上三种情况可知:

  • 前两种情况下,删除节点后,“稳定结构”操作的复杂度都是常数级别,即整个的节点删除操作复杂度为 O(log_2 n)~O(n)
  • 第三种情况下,设删除的节点为 p,“稳定结构”操作需要查找 p 节点左子树中的最大值,也就是左子树中最“右”的叶子结点,即“稳定结构”操作其实也是一种内部的查询操作,所以整个的节点删除操作其实就是两个层次的查询操作,复杂度同为 O(log_2 n)~O(n)

性能分析

由以上查询复杂度、构造复杂度和删除复杂度的分析可知,三种操作的时间复杂度皆为 O(log_2 n)~O(n)。下面分析线性结构的三种操作复杂度,以二分法为例:

  • 查询复杂度,时间复杂度为 O(log_2 n),优于二叉搜索树;
  • 元素的插入操作包括两个步骤,查询和插入。查询的复杂度已知,插入后调整元素位置的复杂度为 O(n),即单个元素的构造复杂度为:O(n)
  • 删除操作也包括两个步骤,查询和删除,查询的复杂度已知,删除后调整元素位置的复杂度为 O(n),即单个元素的删除复杂度为:O(n)

由此可知,二叉搜索树相对于线性结构,在构造复杂度和删除复杂度方面占优;在查询复杂度方面,二叉搜索树可能存在类似于斜树,每层上只有一个节点的情况,该情况下查询复杂度不占优势。

总结

二叉搜索树的节点查询、构造和删除性能,与树的高度相关,如果二叉搜索树能够更“平衡”一些,避免了树结构向线性结构的倾斜,则能够显著降低时间复杂度。二叉搜索树的存储方面,相对于线性结构只需要保存元素值,树中节点需要额外的空间保存节点之间的父子关系,所以在存储消耗上要高于线性结构。

代码附录

python版本:3.7,树中的遍历、节点插入和删除操作使用的是递归形式

  • 树节点定义
# tree node definition
class Node(object):
    def __init__(self, value, lchild=None, rchild=None):
        self.value = value
        self.lchild = lchild
        self.rchild = rchild
  • 树定义
# tree definition
class Tree(object):
    def __init__(self, root=None):
        self.root = root

    # node in-order traversal(LDR)
    def traversal(self):
        traversal(self.root)

    # insert node
    def insert(self, value):
        self.root = insert(self.root, value)

    # delete node
    def delete(self, value):
        self.root = delete(self.root, value)
  • 模块中对树结构中的函数进行实现
# node in-order traversal(LDR)
def traversal(node):
    if not node:
        return
    traversal(node.lchild)
    print(node.value,end=' ')
    traversal(node.rchild)

# insert node
def insert(root, value):
    if not root:
        return Node(value)
    if value < root.value:
        root.lchild = insert(root.lchild, value)
    elif value > root.value:
        root.rchild = insert(root.rchild, value)
    return root

# delete node
def delete(root, value):
    if not root:
        return None
    if value < root.value:
        root.lchild = delete(root.lchild, value)
    elif value > root.value:
        root.rchild = delete(root.rchild, value)
    else:
        if root.lchild and root.rchild:  # degree of the node is 2
            target = root.lchild  # find the maximum node of the left subtree
            while target.rchild:
                target = target.rchild
            root = delete(root, target.value)
            root.value = target.value
        else:  # degree of the node is [0|1]
            root = root.lchild if root.lchild else root.rchild
    return root
  • 测试代码与输出
if __name__ == '__main__':
    arr = [5, 3, 4, 0, 2, 1, 8, 6, 9, 7]
    T = Tree()
    for i in arr:
        T.insert(i)
    print('BST in-order traversal------------------')
    T.traversal()
    print('\ndelete test------------------')
    for i in arr[::-1]:
        print('after delete',i,end=',BST in-order is = ')
        T.delete(i)
        T.traversal()
        print()

输出结果为:

BST in-order traversal------------------
0 1 2 3 4 5 6 7 8 9 
delete test------------------
after delete 7,BST in-order is = 0 1 2 3 4 5 6 8 9 
after delete 9,BST in-order is = 0 1 2 3 4 5 6 8 
after delete 6,BST in-order is = 0 1 2 3 4 5 8 
after delete 8,BST in-order is = 0 1 2 3 4 5 
after delete 1,BST in-order is = 0 2 3 4 5 
after delete 2,BST in-order is = 0 3 4 5 
after delete 0,BST in-order is = 3 4 5 
after delete 4,BST in-order is = 3 5 
after delete 3,BST in-order is = 5 
after delete 5,BST in-order is = 

github 链接:二叉搜索树

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,590评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,808评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,151评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,779评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,773评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,656评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,022评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,678评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,038评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,756评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,411评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,005评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,973评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,053评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,495评论 2 343

推荐阅读更多精彩内容

  • 一些概念 数据结构就是研究数据的逻辑结构和物理结构以及它们之间相互关系,并对这种结构定义相应的运算,而且确保经过这...
    Winterfell_Z阅读 5,648评论 0 13
  • 1 序 2016年6月25日夜,帝都,天下着大雨,拖着行李箱和同学在校门口照了最后一张合照,搬离寝室打车去了提前租...
    RichardJieChen阅读 5,073评论 0 12
  • 基于树实现的数据结构,具有两个核心特征: 逻辑结构:数据元素之间具有层次关系; 数据运算:操作方法具有Log级的平...
    yhthu阅读 4,240评论 1 5
  • 香港購物網科技貿易有限公司【WWW.HKBUYER.HK】是一家專注於全球進出口商品購物的大型B2B2C網站,總部...
    別有根涯阅读 489评论 0 1
  • <火蓝刀锋>,看了三遍了,每看一遍都有不同的感受,每看一遍都会回味里面的情节,其中一句话让我印象深刻,龙百川说:你...
    小彬lv阅读 279评论 0 1