图解分布式系统架构演进之路

1、单应用架构

2、应用服务器和数据服务器分离

单机负载越来越来,所以要将应用服务器和数据库服务器分离



3、应用服务器做集群

每个系统的处理能力是有限的,为了提高并发访问量,需要对应用服务器做集群


这时会涉及到两个问题:

负载均衡

session共享

负载均衡就是将请求均衡地分配到多个系统上,常见的技术有如下几种

DNS

DNS是最简单也是最常见的负载均衡方式,一般用来实现地理级别的均衡。例如,北方的用户访问北京的机房,南方的用户访问广州的机房。一般不会使用DNS来做机器级别的负载均衡,因为太耗费IP资源了。例如,百度搜索可能要10000台以上的机器,不可能将这么多机器全部配置公网IP,然后用DNS来做负载均衡。

Nginx&LVS&F5

DNS是用于实现地理级别的负载均衡,而Nginx&LVS&F5用于同一地点内机器级别的负载均衡。其中Nginx是软件的7层负载均衡,LVS是内核的4层负载均衡,F5是硬件做4层负载均衡,性能从低到高位Nginx<LVS<F5

下图形象的展示了一个实际请求过程中,地理级别的负载均衡和机器级别的负载均衡是如何分工和结合的,其中粗线是地理级别的负载均衡,细线是机器级别的负载均衡,实线代表最终的路由路径

session共享

session共享就是用户在A服务器登录,结果查看购物车时,请求发送到了B服务器,因此用户的session存在A服务器上,所以当请求发送到B服务器上时,会认为用户没有登录

目前解决session跨域共享问题有如下几种方式

session sticky

将请求都落到同一个服务器上,如Nginx的url hash

session replication

session复制,每台服务器都保存一份相同的session

session 集中存储

存储在db、 存储在缓存服务器 (redis)

cookie (主流)

将信息存在加密后的cookie中

4、数据库读写分离

搭建数据库主从集群,实现数据库读写分离,改善数据库负载压力

数据库读写分离的基本实现如下

数据库服务器搭建主从集群,一主一从,一主多从都可以

数据库主机负责读写操作,从机只负责读操作

数据库主机通过复制将数据同步到从机,每台数据库服务器都存储了所有的业务数据

业务服务器将写操作分给数据库主机,将读操作分给数据库从机

实现方式

读写分离需要将读/写操作区分开来,然后访问不同的数据库服务器;分库分表需要根据不同的数据访问不同的数据库服务器,两者本质上都是一种分配机制,即将不同的SQL语句发送到不同的数据库服务器。

读写分离,包括后面要提到的分库分表的实现方式有两种:

程序代码封装

中间件封装

程序代码封装指在代码中抽象一个数据访问层来实现读写分离,分库分表

中间件封装指的是独立一套系统出来,实现读写分离和分库分表操作,如我们熟悉的MySQL Router和Mycat等

5、引入搜索引擎来查询

传统的关系型数据库通过索引来达到快速查询的目的,但是在全文搜索的业务场景下,索引也无能为力,主要体现在如下几点:

全文搜索的条件可以随意排列组合,如果通过索引来满足,则索引的数量会非常多

全文搜索的模糊匹配方式,索引无法满足,只能用like查询,而like查询是整表扫描,效率非常低

目前主要有Elasticsearch与Solr。Solr 是传统搜索应用的有力解决方案,但 Elasticsearch 更适用于新兴的实时搜索应用。

6、增加缓存

为了应对流量持续增加,必须增加缓存

常见的方式有如下几种:

Redis与Memcached

以我们常见的Mybatis为例,很容易和Redis与Memcached整合起来,缓存已经查询过的SQL,因为Mybatis知道自己不擅长缓存,所以提供了接口让这些缓存工具进行整合

CDN

CDN是为了解决用户网络访问时的“最后一公里”效应,本质上是一种“以空间换空间”的加速策略,即将内容缓存在离用户最近的地方,用户访问的是缓存的内容,而不是站点实时的内容。

7、分库分表

读写分离分散了数据库读写操作的压力,但没有分散存储压力,当数据量达到千万甚至上亿条的时候,单台服务器的存储能力会成为系统的瓶颈。常见的分散存储的方法有分库和分表两大类


业务分库

业务分库指的是按照业务模块将数据分散到不同的数据库服务器。例如,一个简单的电商网站,包括商品,订单,用户三个业务模块,我们可以将商品数据,订单数据,用户数据,分开放到3台不同的数据库服务器上,而不是将所有数据都放在一台数据库服务器上

当然业务分库也会带来新的问题:

join操作问题:业务分库后,原本在同一个数据库中的表分散到不同数据库中,导致无法使用SQL的join查询

事务问题:原本在同一个数据库中不同的表可以在同一个事务中修改,业务分库后,表分散到不同数据库中,无法通过事务统一修改

成本问题:业务分库同时也带来了成本的代价,本来1台服务器搞定的事情,现在要3台,如果考虑备份,那就是2台变成6台

分表

表单数据拆分有两种方式,垂直分表水平分表

垂直分表:垂直分表适合将表中某些不常用且占了大量空间的列拆分出去。如上图的nickname和description字段不常用,就可以将这个字段独立到另外一张表中,这样在查询name时,就能带来一定的性能提升

水平分表:水平分表适合表行数特别大的表,如果单表行数超过5000万就必须进行分表,这个数字可以作为参考,但并不是绝对标准,关键还是要看表的访问性能

水平分表后,某条数据具体属于哪个切分后的子表,需要增加路由算法进行计算,常见的路由算法

范围路由:选取有序的数据列(例如,整型,时间戳等)作为路由条件,不同分段分散到不同的数据库表中。以最常见的用户ID为例,路由算法可以按照1000000的范围大小进行分段,1-999999放到数据库1的表中,1000000-1999999放到数据库2的表中,以此类推

Hash路由:选取某个列(或者某几个列组合也可以)的值进行Hash运算,然后根据Hash结果分散到不同的数据库表中。同样以用户Id为例,假如我们一开始就规划了10个数据库表,路由算法可以简单地用user_id%10的值来表示数据所属的数据库表编号,ID为985的用户放到编号为5的子表中,ID为10086的用户放到编号为6的子表中。

配置路由:配置路由就是路由表,用一张独立的表来记录路由信息,同样以用户ID为例,我们新增一张user_router表,这个表包含user_id和table_id两列,根据user_id就可以查询对应的table_id

8、应用拆分/微服务

随着业务的发展,业务越来越多,应用的压力越来越大。工程规模也越来越庞大。这个时候就可以考虑将应用拆分,按照领域模型将我们的商品,订单,用户分拆成子系统。

这样拆分以后,可能会有一些相同的代码,比如订单模块有对用户数据的查询,用户模块中肯定也有对用户数据的查询。这些相同的代码和模块一定要抽象出来。这样有利于维护和管理。这时可以将模块变为一个个服务,模块之间互相调用来获取数据,系统就变成一个微服务了。


服务拆分以后,服务之间的通信可以通过RPC技术,比较典型的有:Webservice、Hessian、HTTP、RMI等。如当前的Dubbo和Spring Cloud都是目前比较流行的微服务框架。


感兴趣可以加Java架构师群获取Java工程化、高性能及分布式、高性能、深入浅出。高架构。性能调优、Spring,MyBatis,Netty源码分析和大数据等多个知识点高级进阶干货的直播免费学习权限 都是大牛带飞 让你少走很多的弯路的 群..号是:855801563 对了 小白勿进 最好是有开发经验

注:加群要求

1、具有工作经验的,面对目前流行的技术不知从何下手,需要突破技术瓶颈的可以加。

2、在公司待久了,过得很安逸,但跳槽时面试碰壁。需要在短时间内进修、跳槽拿高薪的可以加。

3、如果没有工作经验,但基础非常扎实,对java工作机制,常用设计思想,常用java开发框架掌握熟练的,可以加。

4、觉得自己很牛B,一般需求都能搞定。但是所学的知识点没有系统化,很难在技术领域继续突破的可以加。

5.阿里Java高级大牛直播讲解知识点,分享知识,多年工作经验的梳理和总结,带着大家全面、科学地建立自己的技术体系和技术认知!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容