【Spark】RDD操作详解3——键值型Transformation算子

Transformation处理的数据为Key-Value形式的算子大致可以分为:输入分区与输出分区一对一、聚集、连接操作。

输入分区与输出分区一对一

mapValues

mapValues:针对(Key,Value)型数据中的Value进行Map操作,而不对Key进行处理。



方框代表RDD分区。a=>a+2代表只对( V1, 1)数据中的1进行加2操作,返回结果为3。

源码:

  /**
   * Pass each value in the key-value pair RDD through a map function without changing the keys;
   * this also retains the original RDD's partitioning.
   */
  def mapValues[U](f: V => U): RDD[(K, U)] = {
    val cleanF = self.context.clean(f)
    new MapPartitionsRDD[(K, U), (K, V)](self,
      (context, pid, iter) => iter.map { case (k, v) => (k, cleanF(v)) },
      preservesPartitioning = true)
  }

单个RDD或两个RDD聚集

(1)combineByKey

combineByKey是对单个Rdd的聚合。相当于将元素为(Int,Int)的RDD转变为了(Int,Seq[Int])类型元素的RDD。
定义combineByKey算子的说明如下:

  • createCombiner: V => C, 在C不存在的情况下,如通过V创建seq C。
  • mergeValue:(C, V) => C, 当C已经存在的情况下,需要merge,如把item V加到seq
    C中,或者叠加。
  • mergeCombiners:(C,C) => C,合并两个C。
  • partitioner: Partitioner(分区器),Shuffle时需要通过Partitioner的分区策略进行分区。
  • mapSideCombine: Boolean=true, 为了减小传输量,很多combine可以在map端先做。例如, 叠加可以先在一个partition中把所有相同的Key的Value叠加, 再shuffle。
  • serializerClass:String=null,传输需要序列化,用户可以自定义序列化类。

方框代表RDD分区。 通过combineByKey,将(V1,2)、 (V1,1)数据合并为(V1,Seq(2,1))。

源码:

  /**
   * Generic function to combine the elements for each key using a custom set of aggregation
   * functions. Turns an RDD[(K, V)] into a result of type RDD[(K, C)], for a "combined type" C
   * Note that V and C can be different -- for example, one might group an RDD of type
   * (Int, Int) into an RDD of type (Int, Seq[Int]). Users provide three functions:
   *
   * - `createCombiner`, which turns a V into a C (e.g., creates a one-element list)
   * - `mergeValue`, to merge a V into a C (e.g., adds it to the end of a list)
   * - `mergeCombiners`, to combine two C's into a single one.
   *
   * In addition, users can control the partitioning of the output RDD, and whether to perform
   * map-side aggregation (if a mapper can produce multiple items with the same key).
   */
  def combineByKey[C](createCombiner: V => C,
      mergeValue: (C, V) => C,
      mergeCombiners: (C, C) => C,
      partitioner: Partitioner,
      mapSideCombine: Boolean = true,
      serializer: Serializer = null): RDD[(K, C)] = {
    require(mergeCombiners != null, "mergeCombiners must be defined") // required as of Spark 0.9.0
    if (keyClass.isArray) {
      if (mapSideCombine) {
        throw new SparkException("Cannot use map-side combining with array keys.")
      }
      if (partitioner.isInstanceOf[HashPartitioner]) {
        throw new SparkException("Default partitioner cannot partition array keys.")
      }
    }
    val aggregator = new Aggregator[K, V, C](
      self.context.clean(createCombiner),
      self.context.clean(mergeValue),
      self.context.clean(mergeCombiners))
    if (self.partitioner == Some(partitioner)) {
      self.mapPartitions(iter => {
        val context = TaskContext.get()
        new InterruptibleIterator(context, aggregator.combineValuesByKey(iter, context))
      }, preservesPartitioning = true)
    } else {
      new ShuffledRDD[K, V, C](self, partitioner)
        .setSerializer(serializer)
        .setAggregator(aggregator)
        .setMapSideCombine(mapSideCombine)
    }
  }

  /**
   * Simplified version of combineByKey that hash-partitions the output RDD.
   */
  def combineByKey[C](createCombiner: V => C,
      mergeValue: (C, V) => C,
      mergeCombiners: (C, C) => C,
      numPartitions: Int): RDD[(K, C)] = {
    combineByKey(createCombiner, mergeValue, mergeCombiners, new HashPartitioner(numPartitions))
  }

(2)reduceByKey

reduceByKey是更简单的一种情况,只是两个值合并成一个值,所以createCombiner很简单,就是直接返回v,而mergeValue和mergeCombiners的逻辑相同,没有区别。



方框代表RDD分区。 通过用户自定义函数(A,B)=>(A+B),将相同Key的数据(V1,2)、(V1,1)的value相加,结果为(V1,3)。

源码:

  /**
   * Merge the values for each key using an associative reduce function. This will also perform
   * the merging locally on each mapper before sending results to a reducer, similarly to a
   * "combiner" in MapReduce.
   */
  def reduceByKey(partitioner: Partitioner, func: (V, V) => V): RDD[(K, V)] = {
    combineByKey[V]((v: V) => v, func, func, partitioner)
  }

  /**
   * Merge the values for each key using an associative reduce function. This will also perform
   * the merging locally on each mapper before sending results to a reducer, similarly to a
   * "combiner" in MapReduce. Output will be hash-partitioned with numPartitions partitions.
   */
  def reduceByKey(func: (V, V) => V, numPartitions: Int): RDD[(K, V)] = {
    reduceByKey(new HashPartitioner(numPartitions), func)
  }

  /**
   * Merge the values for each key using an associative reduce function. This will also perform
   * the merging locally on each mapper before sending results to a reducer, similarly to a
   * "combiner" in MapReduce. Output will be hash-partitioned with the existing partitioner/
   * parallelism level.
   */
  def reduceByKey(func: (V, V) => V): RDD[(K, V)] = {
    reduceByKey(defaultPartitioner(self), func)
  }

(3)partitionBy

partitionBy函数对RDD进行分区操作。
如果原有RDD的分区器和现有分区器(partitioner)一致,则不重分区,如果不一致,则相当于根据分区器生成一个新的ShuffledRDD。



方框代表RDD分区。 通过新的分区策略将原来在不同分区的V1、 V2数据都合并到了一个分区。

源码:

  /**
   * Return a copy of the RDD partitioned using the specified partitioner.
   */
  def partitionBy(partitioner: Partitioner): RDD[(K, V)] = {
    if (keyClass.isArray && partitioner.isInstanceOf[HashPartitioner]) {
      throw new SparkException("Default partitioner cannot partition array keys.")
    }
    if (self.partitioner == Some(partitioner)) {
      self
    } else {
      new ShuffledRDD[K, V, V](self, partitioner)
    }
  }

(4)cogroup

cogroup函数将两个RDD进行协同划分。对在两个RDD中的Key-Value类型的元素,每个RDD相同Key的元素分别聚合为一个集合,并且返回两个RDD中对应Key的元素集合的迭代器(K, (Iterable[V], Iterable[w]))。其中,Key和Value,Value是两个RDD下相同Key的两个数据集合的迭代器所构成的元组。


大方框代表RDD,大方框内的小方框代表RDD中的分区。 将RDD1中的数据(U1,1)、(U1,2)和RDD2中的数据(U1,2)合并为(U1,((1,2),(2)))。

源码:

  /**
   * For each key k in `this` or `other1` or `other2` or `other3`,
   * return a resulting RDD that contains a tuple with the list of values
   * for that key in `this`, `other1`, `other2` and `other3`.
   */
  def cogroup[W1, W2, W3](other1: RDD[(K, W1)],
      other2: RDD[(K, W2)],
      other3: RDD[(K, W3)],
      partitioner: Partitioner)
      : RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2], Iterable[W3]))] = {
    if (partitioner.isInstanceOf[HashPartitioner] && keyClass.isArray) {
      throw new SparkException("Default partitioner cannot partition array keys.")
    }
    val cg = new CoGroupedRDD[K](Seq(self, other1, other2, other3), partitioner)
    cg.mapValues { case Array(vs, w1s, w2s, w3s) =>
       (vs.asInstanceOf[Iterable[V]],
         w1s.asInstanceOf[Iterable[W1]],
         w2s.asInstanceOf[Iterable[W2]],
         w3s.asInstanceOf[Iterable[W3]])
    }
  }

  /**
   * For each key k in `this` or `other`, return a resulting RDD that contains a tuple with the
   * list of values for that key in `this` as well as `other`.
   */
  def cogroup[W](other: RDD[(K, W)], partitioner: Partitioner)
      : RDD[(K, (Iterable[V], Iterable[W]))]  = {
    if (partitioner.isInstanceOf[HashPartitioner] && keyClass.isArray) {
      throw new SparkException("Default partitioner cannot partition array keys.")
    }
    val cg = new CoGroupedRDD[K](Seq(self, other), partitioner)
    cg.mapValues { case Array(vs, w1s) =>
      (vs.asInstanceOf[Iterable[V]], w1s.asInstanceOf[Iterable[W]])
    }
  }

  /**
   * For each key k in `this` or `other1` or `other2`, return a resulting RDD that contains a
   * tuple with the list of values for that key in `this`, `other1` and `other2`.
   */
  def cogroup[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)], partitioner: Partitioner)
      : RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2]))] = {
    if (partitioner.isInstanceOf[HashPartitioner] && keyClass.isArray) {
      throw new SparkException("Default partitioner cannot partition array keys.")
    }
    val cg = new CoGroupedRDD[K](Seq(self, other1, other2), partitioner)
    cg.mapValues { case Array(vs, w1s, w2s) =>
      (vs.asInstanceOf[Iterable[V]],
        w1s.asInstanceOf[Iterable[W1]],
        w2s.asInstanceOf[Iterable[W2]])
    }
  }

  /**
   * For each key k in `this` or `other1` or `other2` or `other3`,
   * return a resulting RDD that contains a tuple with the list of values
   * for that key in `this`, `other1`, `other2` and `other3`.
   */
  def cogroup[W1, W2, W3](other1: RDD[(K, W1)], other2: RDD[(K, W2)], other3: RDD[(K, W3)])
      : RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2], Iterable[W3]))] = {
    cogroup(other1, other2, other3, defaultPartitioner(self, other1, other2, other3))
  }

  /**
   * For each key k in `this` or `other`, return a resulting RDD that contains a tuple with the
   * list of values for that key in `this` as well as `other`.
   */
  def cogroup[W](other: RDD[(K, W)]): RDD[(K, (Iterable[V], Iterable[W]))] = {
    cogroup(other, defaultPartitioner(self, other))
  }

  /**
   * For each key k in `this` or `other1` or `other2`, return a resulting RDD that contains a
   * tuple with the list of values for that key in `this`, `other1` and `other2`.
   */
  def cogroup[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)])
      : RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2]))] = {
    cogroup(other1, other2, defaultPartitioner(self, other1, other2))
  }

  /**
   * For each key k in `this` or `other`, return a resulting RDD that contains a tuple with the
   * list of values for that key in `this` as well as `other`.
   */
  def cogroup[W](other: RDD[(K, W)], numPartitions: Int): RDD[(K, (Iterable[V], Iterable[W]))] = {
    cogroup(other, new HashPartitioner(numPartitions))
  }

  /**
   * For each key k in `this` or `other1` or `other2`, return a resulting RDD that contains a
   * tuple with the list of values for that key in `this`, `other1` and `other2`.
   */
  def cogroup[W1, W2](other1: RDD[(K, W1)], other2: RDD[(K, W2)], numPartitions: Int)
      : RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2]))] = {
    cogroup(other1, other2, new HashPartitioner(numPartitions))
  }

  /**
   * For each key k in `this` or `other1` or `other2` or `other3`,
   * return a resulting RDD that contains a tuple with the list of values
   * for that key in `this`, `other1`, `other2` and `other3`.
   */
  def cogroup[W1, W2, W3](other1: RDD[(K, W1)],
      other2: RDD[(K, W2)],
      other3: RDD[(K, W3)],
      numPartitions: Int)
      : RDD[(K, (Iterable[V], Iterable[W1], Iterable[W2], Iterable[W3]))] = {
    cogroup(other1, other2, other3, new HashPartitioner(numPartitions))
  }

连接

(1)join

join对两个需要连接的RDD进行cogroup函数操作。cogroup操作之后形成的新RDD,对每个key下的元素进行笛卡尔积操作,返回的结果再展平,对应Key下的所有元组形成一个集合,最后返回RDD[(K,(V,W))]。
join的本质是通过cogroup算子先进行协同划分,再通过flatMapValues将合并的数据打散。



对两个RDD的join操作示意图。 大方框代表RDD,小方框代表RDD中的分区。函数对拥有相同Key的元素(例如V1)为Key,以做连接后的数据结果为(V1,(1,1))和(V1,(1,2))。

源码:

  /**
   * Return an RDD containing all pairs of elements with matching keys in `this` and `other`. Each
   * pair of elements will be returned as a (k, (v1, v2)) tuple, where (k, v1) is in `this` and
   * (k, v2) is in `other`. Uses the given Partitioner to partition the output RDD.
   */
  def join[W](other: RDD[(K, W)], partitioner: Partitioner): RDD[(K, (V, W))] = {
    this.cogroup(other, partitioner).flatMapValues( pair =>
      for (v <- pair._1.iterator; w <- pair._2.iterator) yield (v, w)
    )
  }

(2)leftOuterJoin和rightOuterJoin

LeftOuterJoin(左外连接)和RightOuterJoin(右外连接)相当于在join的基础上先判断一侧的RDD元素是否为空,如果为空,则填充为空。 如果不为空,则将数据进行连接运算,并返回结果。

源码:

  /**
   * Perform a left outer join of `this` and `other`. For each element (k, v) in `this`, the
   * resulting RDD will either contain all pairs (k, (v, Some(w))) for w in `other`, or the
   * pair (k, (v, None)) if no elements in `other` have key k. Uses the given Partitioner to
   * partition the output RDD.
   */
  def leftOuterJoin[W](other: RDD[(K, W)], partitioner: Partitioner): RDD[(K, (V, Option[W]))] = {
    this.cogroup(other, partitioner).flatMapValues { pair =>
      if (pair._2.isEmpty) {
        pair._1.iterator.map(v => (v, None))
      } else {
        for (v <- pair._1.iterator; w <- pair._2.iterator) yield (v, Some(w))
      }
    }
  }

  /**
   * Perform a right outer join of `this` and `other`. For each element (k, w) in `other`, the
   * resulting RDD will either contain all pairs (k, (Some(v), w)) for v in `this`, or the
   * pair (k, (None, w)) if no elements in `this` have key k. Uses the given Partitioner to
   * partition the output RDD.
   */
  def rightOuterJoin[W](other: RDD[(K, W)], partitioner: Partitioner)
      : RDD[(K, (Option[V], W))] = {
    this.cogroup(other, partitioner).flatMapValues { pair =>
      if (pair._1.isEmpty) {
        pair._2.iterator.map(w => (None, w))
      } else {
        for (v <- pair._1.iterator; w <- pair._2.iterator) yield (Some(v), w)
      }
    }
  }

转载请注明作者Jason Ding及其出处
GitCafe博客主页(http://jasonding1354.gitcafe.io/)
Github博客主页(http://jasonding1354.github.io/)
CSDN博客(http://blog.csdn.net/jasonding1354)
简书主页(http://www.jianshu.com/users/2bd9b48f6ea8/latest_articles)
Google搜索jasonding1354进入我的博客主页

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,921评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,635评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,393评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,836评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,833评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,685评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,043评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,694评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,671评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,670评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,779评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,424评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,027评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,984评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,214评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,108评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,517评论 2 343

推荐阅读更多精彩内容