JavaScript 算法之复杂度分析

新的一年,先给大家整理分享一个简单而又重要的知识点:时间复杂度和空间复杂度。因为在前几篇文章中,提到了时间复杂度,也许有些小伙伴还不清楚。

先给大家出个思考题,计算:sum = 1+2+3+...+n ,计算 sum 的值。

为什么需要复杂度分析

  • 学习数据和算法就是为了解“快”和“省”的问题,也就是如何设计你的代码才能使运算效率更快,占用空间更小。那如何来计算代码执行效率呢?这里就会用到复杂度分析。
  • 虽然我们可以用代码准确的计算出执行时间,但是这也会有很多局限性。
  • 数据规模的不同会直接影响到测试结果。比如说同一个排序算法,排序顺序不一样,那么最后的计算效率的结果也会不一样;如果恰好已经是排序好的了数组,那么执行时间就会更短。又比如说如果数据规模比较小的话,测试结果可能也无法反应算法的性能。
  • 测试的环境不同也会影响到测试结果。比如说同一套代码分别在 i3 和 i7 处理器上进行测试,那么 i7 上的测试时间肯定会比 i3 上的短。

所以需要一个不用准确的测试结果来衡量,就可以粗略地估计代码执行时间的方法。这就是复杂度分析

大 O 复杂度表示法

以一个例子开始,请估算下面代码的执行时间

function total(n) { // 1
      var sum = 0; // 2
      for (var i = 0; i < n; i++) { // 3
        sum += i; // 4
      } //5 
    } //6

我们假设每行代码执行的时间都一样,记做 t,那么上面的函数中的第 2 行需要 1 个 t 的时间,第 3 行 和 第 4 行分别需要 n 个 t 的时间,那么这段代码总的执行时间为 (2n+1)*t。

那么按照上面的分析方法,请估算下面代码的执行时间

 function total(n) { // 1
      var sum = 0; // 2
      for (var i = 0; i < n; i++) { // 3 
        for (var j = 0; j < n; j++) { // 4
          sum = sum + i + j; // 5
        }
      }
    }

第 2 行需要一个 t 的时间,第 3 行需要 n 个 t 的时间,第 4 行和第 5 行分别需要 n2 个的时间,那么这段代码总的执行时间为 (2n2+n+1)*t 的时间。

从数学角度来看,我们可以得出个规律:代码的总执行时间 T(n) 与每行代码的执行次数成正比

T(n) = O(f(n))

在这个公式中,T(n) 表示代码的执行时间;n 表示数据规模的大小;f(n) 表示每行代码执行的次数总和;O 表示代码的执行时间 T(n) 与 f(n) 表达式成正比。

所以上边两个函数的执行时间可以标记为 T(n) = O(2n+1) 和 T(n) = O(2n2+n+1)。这就是大 O 时间复杂度表示法,它不代表代码真正的执行时间,而是表示代码随数据规模增长的变化趋势,简称时间复杂度

而且当 n 很大时,我们可以忽略常数项,只保留一个最大量级即可。所以上边的代码执行时间可以简单标记为 T(n) = O(n) 和 T(n) = O(n2)。

时间复杂度分析

那如何分析一段代码的时间复杂度呢,可以利用下面的几个方法

1.只关注循环执行次数最多的一段代码

我们在分析一段代码的时间复杂度时,我们只要关注循环次数最多的那一段代码就 ok 了。
比如说在第一段代码中

function total(n) { // 1
      var sum = 0; // 2
      for (var i = 0; i < n; i++) { // 3
        sum += i; // 4
      } //5 
    } //6

只有第 3 行和第 4 行是执行次数最多的,分别执行了 n 次,那么忽略常数项,所以此段代码的时间复杂度就是 O(n)。

2.加法法则:总复杂度等于量级最大的那段代码的复杂度。

比如说,看下面这段代码的时间复杂度。

function total(n) { 
      // 第一个 for 循环
      var sum1 = 0; 
      for (var i = 0; i < n; i++) {
        for (var j = 0; j < n; j++) {
          sum1 = sum1 + i + j; 
        }
      }
      // 第二个 for 循环
      var sum2 = 0;
      for(var i=0;i<1000;i++) {
        sum2 = sum2 + i;
      }
      // 第三个 for 循环
      var sum3 = 0;
      for (var i = 0; i < n; i++) {
        sum3 = sum3 + i;
      }
    }

我们先分别分析每段 for 循环的时间复杂度,再取他们中最大的量级来作为整段代码的时间复杂度。

第一段 for 循环的时间复杂度为 O(n2)。

第二段 for 循环执行了 1000 次,是个常数量级,尽管对代码的执行时间会有影响,但是当 n 无限大的时候,就可以忽略。因为它本身对增长趋势没有影响,所以这段代码的时间复杂度可以忽略。

第三段 for 循环的时间复杂度为 O(n)。

总上,取最大量级,所以整段代码的时间复杂度为 O(n2)。

3.乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积。

比如说,看下面这段代码的时间复杂度

  function f(i) {
      var sum = 0;
      for (var j = 0; j < i; j++) {
        sum += i;
      }
      return sum;
    }
    function total(n) {
      var res = 0;
      for (var i = 0; i < n; i++) {
        res = res + f(i); // 调用 f 函数
      }
    }

单独看 total 函数的时间复杂度就是为 T1(n)=O(n),但是考虑到 f 函数的时间复杂度也为 T2(n)=O(n)。
所以整段代码的时间复杂度为 T(n) = T1(n) * T2(n) = O(n*n)=O(n2)。

几种常见的时间复杂度分析

只看最高量级的复杂度


Xnip2019-01-03_16-59-22.jpg

如上图可以粗略的分为两类,多项式量级非多项式量级。其中,非多项式量级只有两个:O(2n) 和 O(n!)
对应的增长率如下图所示

image

当数据规模 n 增长时,非多项式量级的执行时间就会急剧增加,所以,非多项式量级的代码算法是非常低效的算法。

1. O(1)

O(1) 只是常量级时间复杂度表示法,并不是代码只有一行,比如说下面这段代码

function total() {
      var sum = 0;
      for(var i=0;i<100;i++) {
        sum += i;
      }
    }

虽然有这么多行,即使 for 循环执行了 100 次,但是代码的执行时间不随 n 的增大而增长,所以这样的代码复杂度就为 O(1)。

2. O(logn)、O(nlogn)

对数阶时间复杂度的常见代码如下

 function total1(n) {
      var sum = 0;
      var i = 1;
      while (i <= n) {
        sum += i;
        i = i * 2;
      }
    }
    function total2(n) {
      var sum = 0;
      for (var i = 1; i <= n; i = i * 2) {
        sum += i;
      }
    }

上面两个函数都有一个相同点,变量 i 从 1 开始取值,每循环一次乘以 2,当大于 n 时,循环结束。实际上,i 的取值就是一个等比数列,就像下面这样

20 21 22 ... 2k... 2x =n;

所以只要知道 x 的值,就可以知道这两个函数的执行次数了。那由 2x = n 可以得出 x = log2n,所以这两个函数的时间复杂度为 O(log2n)。

再看下面两个函数的时间复杂度

 function total1(n) {
      var sum = 0;
      var i = 1;
      while (i <= n) {
        sum += i;
        i = i * 3;
      }
    }
    function total2(n) {
      var sum = 0;
      for (var i = 1; i <= n; i = i * 3) {
        sum += i;
      }
    }

由上可以得知,这两个函数的时间复杂度为 O(log3n) 。

由于我们可以忽略常数,也可以忽略对数中的底数,所以在对数阶复杂度中,统一表示为 O(logn);那 O(nlogn) 的含义就很明确了,时间复杂度 为O(logn) 的代码执行了 n 次。

3. O(m+n)、O(m*n)

再来看一段特殊的代码时间复杂度,比如说

 function total(m,n) {
      var sum1 = 0;
      for (var i = 0; i < n; i++) {
        sum1 += i;
      }
      var sum2 = 0;
      for (var i = 0; i < m; i++) {
        sum2 += i;
      }
      return sum1 + sum2;
    }

因为我们无法评估 m 和 n 谁的量级比较大,所以就不能忽略掉其中一个,这个函数的复杂度是有两个数据的量级来决定的,所以此函数的时间复杂度为 O(m+n);那么 O(m*n) 的时间复杂度类似。

空间复杂度分析

空间复杂度的话和时间复杂度类似推算即可。
所谓空间复杂度就是表示算法的存储空间和数据规模之间的关系

比如说分析下面代码的空间复杂度:

function initArr(n) {
      var arr = [];
      for (var i = 0; i < n; i++) {
        arr[i] = i;
      }
    }

根据时间复杂度的推算,忽略掉常数量级,每次数组赋值都会申请一个空间存储变量,所以此函数的空间复杂度为 O(n)。

常见的空间复杂度只有 O(1)、O(n)、O(n2)。其他的话很少会用到。

思考题解答

现在我们回到开始的思考题上,代码实现很简单:

function total(n) {
      var sum = 0;
      for (var i = 1; i <= n; i++) {
        sum += i;
      }
      return sum;
    }

此函数的时间复杂度你现在应该很容易就能看出来了,为 O(n)。

我觉得这个时间复杂度有点高了,我想要 O(1) 的时间复杂度函数来实现这个算法,可以吗?

可以的,小数学神通高斯教会我们一招,如下

function total(n) {
      var sum = n*(n+1)/2
      return sum;
    }

此函数的时间复杂度仅仅为 O(1),在数据规模比较庞大的时候,下面的函数是不是明显比上面的函数运算效率更高呢。

总结

复杂度也叫渐进复杂度,包括时间复杂度空间复杂度,一个表示执行的快慢,一个表示内存的消耗,用来分析算法执行效率与数据规模之间的增长关系,可以粗略的表示,越高阶复杂度的算法,执行效率越低。

学习了复杂度分析后,是不是能避免写出效率低的代码呢?来给你的代码做个分析吧。

重点

如果有错误或者错别字,还请给我留言指出,谢谢。

我们下期见。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,294评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,493评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,790评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,595评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,718评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,906评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,053评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,797评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,250评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,570评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,711评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,388评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,018评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,796评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,023评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,461评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,595评论 2 350

推荐阅读更多精彩内容