从Spark Streming到Structured Streaming

  • Spark Streming的不足之处
  • Structured Streming特性

Spark Streming的不足之处

使用 Processing Time 而不是 Event Time,计算数据对象不合理
首先解释一下,Processing Time 是数据到达 Spark 被处理的时间,而 Event Time 是数据自带的属性,一般表示数据产生于数据源的时间。比如 IoT 中,传感器在 12:00:00 产生一条数据,然后在 12:00:05 数据传送到 Spark,那么 Event Time 就是 12:00:00,而 Processing Time 就是 12:00:05。我们知道 Spark Streaming 是基于 DStream 模型的 micro-batch 模式,简单来说就是将一个微小时间段,比如说 1s,的流数据当前批数据来处理。如果我们要统计某个时间段的一些数据统计,毫无疑问应该使用 Event Time,但是因为 Spark Streaming 的数据切割是基于 Processing Time,这样就导致使用 Event Time 特别的困难。

Complex, low-level api,封装程度不够高级
这点比较好理解,DStream (Spark Streaming 的数据模型)提供的 API 类似 RDD 的 API 的,非常的 low level。当我们编写 Spark Streaming 程序的时候,本质上就是要去构造 RDD 的 DAG 执行图,然后通过 Spark Engine 运行。这样导致一个问题是,DAG 可能会因为开发者的水平参差不齐而导致执行效率上的天壤之别。这样导致开发者的体验非常不好,也是任何一个基础框架不想看到的(基础框架的口号一般都是:你们专注于自己的业务逻辑就好,其他的交给我)。这也是很多基础系统强调 Declarative 的一个原因。

reason about end-to-end application,语义保持困难
这里的 end-to-end 指的是直接 input 到 out,比如 Kafka 接入 Spark Streaming 然后再导出到 HDFS 中。DStream 只能保证自己的一致性语义是 exactly-once 的,而 input 接入 Spark Streaming 和 Spark Straming 输出到外部存储的语义往往需要用户自己来保证。而这个语义保证写起来也是非常有挑战性,比如为了保证 output 的语义是 exactly-once 语义需要 output 的存储系统具有幂等的特性,或者支持事务性写入,这个对于开发者来说都不是一件容易的事情。

Structured Streming特性

Structured Streaming 在 Spark 2.0 版本于 2016 年引入,Structured Streaming 和其他系统的显著区别主要如下:

Incremental query model: Structured Streaming 将会在新增的流式数据上不断执行增量查询,同时代码的写法和批处理 API (基于 Dataframe 和 Dataset API)完全一样,而且这些 API 非常的简单。

Support for end-to-end application: Structured Streaming 和内置的 connector 使的 end-to-end 程序写起来非常的简单,而且 "correct by default"。数据源和 sink 满足 "exactly-once" 语义,这样我们就可以在此基础上更好地和外部系统集成。

复用 Spark SQL 执行引擎:我们知道 Spark SQL 执行引擎做了非常多的优化工作,比如执行计划优化、codegen、内存管理等。这也是 Structured Streaming 取得高性能和高吞吐的一个原因。

总结一下,Structured Streaming 通过提供一套 high-level 的 declarative api 使得流式计算的编写相比 Spark Streaming 简单容易不少,同时通过提供 end-to-end 的 exactly-once 语义使用 Structured Streaming 可以和其他系统更好的集成。性能方面,通过复用 Spark SQL Engine 来保证高性能。

参考文章:
1、https://zhuanlan.zhihu.com/p/51883927

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,287评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,346评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,277评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,132评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,147评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,106评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,019评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,862评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,301评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,521评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,682评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,405评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,996评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,651评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,803评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,674评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,563评论 2 352

推荐阅读更多精彩内容