大模型面试题:常见的微调方法有哪些说下原理并对比

更多实时面试题总结请关注我的公众号"算法狗" 或移步至 https://pica.zhimg.com/80/v2-7fd6e77f69aa02c34ca8c334870b3bcd_720w.webp?source=d16d100b

这里说的微调主要是指参数微调,参数微调的方法主要有以下几种:

  • Adapter
    在预训练模型每一层(或某些层)中添加Adapter模块(如上图左侧结构所示),微调时冻结预训练模型主体,由Adapter模块学习特定下游任务的知识。每个Adapter模块由两个前馈子层组成。具体使用了Adapter的模型结构如下所示:
    <img src="https://upload-images.jianshu.io/upload_images/6363811-e9e3504ebc924693.png" align="center" width="60%"/>
    给每个任务定义了自己的Prompt,拼接到输入数据一起作为输入,同时freeze预训练模型进行训练
  • Prefix-tunning
    前缀微调将一个连续的特定于任务的向量序列添加到输入,称之为前缀,如下图中的红色块所示。与提示(prompt)不同的是,前缀完全由自由参数组成,与真正的token不对应。相比于传统的微调,前缀微调只优化了前缀。因此,我们只需要存储一个大型Transformer和已知任务特定前缀的副本,对每个额外任务产生非常小的开销。
    <img src="https://upload-images.jianshu.io/upload_images/6363811-714833b3d326f5ac.png" align="center" width="60%"/>
  • P-tuning/P-tuning V2
    P-tuning V1直接对embedding层进行优化存在两个挑战:embedding层已经经过预训练,如果直接对输入的prompt embedding进行随机初始化训练,容易陷入局部最优;没法捕捉到prompt embedding之间的相关性。
    P-Tuning V2是升级版本,主要解决P-Tuning V1在小参数量模型上表现差的问题。V2在每一层上都加了一个残差连接,每一层都加上prompts,使特征更充分。
    P-tuning模型加入embedding位置不固定,可以加在整个输入的前面或者后面,用法比较灵活,且其通过MLP+LSTM的方式对加入的embedding进行了学习,以提高收敛性。整体框架如下图所示:
    image
  • LORA
    采用低秩矩阵近似的思想,冻结一个预训练模型的矩阵参数,并选择用A和B矩阵来替代,在下游任务时只更新A和B。流程如下:
    <img src="https://upload-images.jianshu.io/upload_images/6363811-bebf429888053cef.png" align="center" width="40%"/>

参考:
[1] https://zhuanlan.zhihu.com/p/636481171
[2] https://zhuanlan.zhihu.com/p/709376189

本文由mdnice多平台发布

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,236评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,867评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,715评论 0 340
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,899评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,895评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,733评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,085评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,722评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,025评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,696评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,816评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,447评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,057评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,009评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,254评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,204评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,561评论 2 343

推荐阅读更多精彩内容