2 Sequences DP - 72. Edit Distance

https://leetcode.com/problems/edit-distance/description/

参考 CodeGanker:

我们维护的变量res[i][j]表示的是word1的前i个字符和word2的前j个字符编辑的最少操作数是多少。假设我们拥有res[i][j]前的所有历史信息,看看如何在常量时间内得到当前的res[i][j],我们讨论两种情况:
1)如果word1[i-1]=word2[j-1],也就是当前两个字符相同,也就是不需要编辑,那么很容易得到res[i][j]=res[i-1][j-1],因为新加入的字符不用编辑;
2)如果word1[i-1]!=word2[j-1],那么我们就考虑三种操作:
2.1) 如果是删除word1[i - 1],那么res[i][j]=res[i-1][j]+1,也就是取word1前i-1个字符和word2前j个字符的最好结果,然后一个删除操作;
2.2) 如果是删除word2[j - 1],那么res[i][j]=res[i][j-1]+1,道理同上面一种操作;
2.3) 如果是替换操作,那么类似于上面第一种情况,但是要加一个替换操作(因为word1[i-1]和word2[j-1]不相等),所以递推式是res[i][j]=res[i-1][j-1]+1。

上面列举的情况包含了所有可能性。

两点思考:

  • 删除和插入操作对应的操作数是一样的;"" => "abc" 进行插入操作“abc” => "" 进行删除操作,所需的操作数是一致的;
  • 删除操作应该是更容易维护和进行推导运算的。因为删除 word[index] 处的 char,继续向下进行 word[greaterThanIndex] 的 chars 可以继续进行;相反,对word index 处插入新的char,会使原来的 char 后移,word 位数增加,该 char 仍须继续被计算;
class Solution {
    public int minDistance(String word1, String word2) {
        if (word1 == null || word1.length() == 0) {
            return (word2 == null) ? 0 : word2.length();
        }
        if (word2 == null || word2.length() == 0) {
            return (word1 == null) ? 0 : word1.length();
        }
        
        int len1 = word1.length();
        int len2 = word2.length();
        int[][] dp = new int[len1 + 1][len2 + 1];
        
        for (int i = 0; i <= len1; i++) {
            dp[i][0] = i;
        }
        for (int j = 0; j <= len2; j++) {
            dp[0][j] = j;
        }
        
        for (int i = 1; i <= len1; i++) {
            char c1 = word1.charAt(i - 1);
            for (int j = 1; j <= len2; j++) {
                char c2 = word2.charAt(j - 1);
                if (c1 == c2) {
                    dp[i][j] = dp[i - 1][j - 1];
                } else {
                    int replace = dp[i - 1][j - 1] + 1; // replace c1 to c2 in word1
                    int delete = dp[i - 1][j] + 1;      // delete c1 in word1 at (i - 1)
                    int insert = dp[i][j - 1] + 1;      // delete c2 in word2 at (j - 1)
                    dp[i][j] = Math.min(Math.min(replace, delete), insert);
                }
            }
        }
        return dp[len1][len2];
    }
}

From 九章:

Edit Distance
state: f[i][j]a的前i个字符“配上”b的前j个字符 最少要用几次编辑使得他们相等
function:
f[i][j] = MIN(f[i-1][j-1], f[i-1][j]+1, f[i][j-1]+1) // a[i] == b [j]
= MIN(f[i-1][j], f[i][j-1], f[i-1][j-1]) + 1 // a[i] != b[j] intialize: f[i][0] = i, f[0][j] = j
answer: f[a.length()][b.length()]

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,657评论 6 505
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,889评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,057评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,509评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,562评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,443评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,251评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,129评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,561评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,779评论 3 335
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,902评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,621评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,220评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,838评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,971评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,025评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,843评论 2 354

推荐阅读更多精彩内容