Johnson 全源最短路径算法

前言

上一篇文章已经阐述了Floyd-Warshall算法,适用于存在负权重路径的稠密图。本文讲述的算法适用于稀疏图。

全源最短路径求解其实是单源最短路径的推广,求解单源最短路径的两种算法时间复杂度分别为:

  • Dijkstra 单源最短路径算法:时间复杂度为 O(E + VlogV),要求权值非负;
  • Bellman-Ford 单源最短路径算法:时间复杂度为 O(VE),适用于带负权值情况;

如果对全图顶点遍历,使用Dijkstra 算法,时间复杂度将变成O(VE + V2logV),看起来优于 Floyd-Warshall 算法的 O(V3)。不过,Dijkstra 算法要求权值重不能为负。

Johnson 算法能调整权重为负的图,使之能够使用Dijkstra 算法。

re-weight

以下图为例,Johnson 算法对下图进行re-weight操作,使权重不为负,并且re-weight后,计算出来的最短路径仍然正确。

首先,新增一个源顶点 ,并使其与所有顶点连通,新边赋权值为 0,如下图所示。

接下来重新计算新增顶点到其它顶点的最短路径,利用单源最短路径算法,图中存在负权重节点,使用bellman ford算法,计算新增节点到其它节点的最短路径 h[],然后使用如下公式对所有边的权值进行 "re-weight":

w(u, v) = w(u, v) + (h[u] - h[v]).

对于此公式的证明请参考算法导论一书。

现在除新增结点外,其它结点的相关边权重值都已经为正数了,可以将新增结点删除,对其它结点使用Dijkstra 算法了。

实现

Johnson 算法比Floyd-warshall算法更容易理解一些,实现较简单,代码如下。本博中所有代码均可见本人的github,欢迎访问。

public void johnson(MatrixGraph graph){
    Vertex s = new Vertex("s");
    graph.addVertex(s);
    for (int i = 0; i < graph.mList.size(); i++) {
        graph.addEdge(s, graph.mList.get(i), 0);
    }
    //计算s点到其它点的最短距离
    ArrayList<Integer> h = bellman_ford(graph, s);
    //重新计算除s以外的其它点权重
    ArrayList<MatrixEdge> edges = new ArrayList<>();
    MatrixEdge temp = null;
    for (int i = 0; i < VERTEX_NUM; i++) {
        for (int j = 0; j < VERTEX_NUM; j++) {
            temp = graph.mEdges[i][j];
            if (temp != null && temp.v1 != s && temp.v2 != s) {
                edges.add(temp);
            }
        }
    }
    
    System.out.println(" -------- ");
    
    for (int i = 0; i < edges.size(); i++) {
        temp = edges.get(i);
        temp.weight = temp.weight + h.get(graph.mList.indexOf(temp.v1)) - h.get(graph.mList.indexOf(temp.v2));
        System.out.print(temp + " | ");
    }
    System.out.println();
    System.out.println(" --------- ");
    
    graph.removeVertex(s);
    
    //根据重新计算的非负权重值,遍历调用dijkstra算法
    for (int i = 0; i < graph.mList.size(); i++) {
        dijkstra(graph, graph.mList.get(i));
    }
}
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,001评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,210评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,874评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,001评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,022评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,005评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,929评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,742评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,193评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,427评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,583评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,305评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,911评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,564评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,731评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,581评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,478评论 2 352

推荐阅读更多精彩内容